

7-10 DE SEPTIEMBRE 2019

Con la colaboración de:

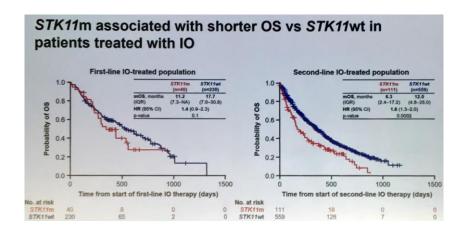
CPNM avanzado: Quimioterapia / Inmunoterapia

J.M. Sánchez Torres

Hospital de la princesa

Con la colaboración de:

STK11/LKB1 Mutations in Metastatic NSCLC (mNSCLC): Prognostic Value in the Real World (OA07.02 Shire N, et al)



- STK11 (STK11m) mutations and co-occurring KRAS mutations/STK11 mutations (KRASm/STK11m) have been associated with poor outcomes in patients treated with immunotherapy
- The prognostic value is less understood among CT-treated patients
- Retrospective study examining STK11m, KRASm/STK11m (FoundationOne) and survival outcomes in patients receiving IO (as monotherapy or in combination) or CT in the real-world setting
- 2407 p (1847 nonSq), average age 66.1 years
 - 328/2047 (13.6%) p harbored STKm
 - 157/2047 (6.5%) p harbored *KRASm/STK11m*
- STK11m was associated with shorter OS and PFS versus wild-type in the 1st-L and 2nd-L setting irrespective of treatment
- All association were more pronounced among KRAS/LKB1

LKB1 Mutations in Metastatic NSCLC (mNSCLC): Prognostic Value in the Real World (OA07.02 Shire N, et al)

STK11m associated with shorter OS vs STK11wt in patients treated with 1L chemotherapy First-line chemotherapy-treated population Second-line chemotherapy-treated population (7.7-37.5) 1.4 (1.2-1.6) 0.6 0.6 0.4 0.4 0.2 500 1000 1500 Time from start of second-line chemotherapy Time from start of first-line chemotherapy (days) No. at risk No. at risk STK11m

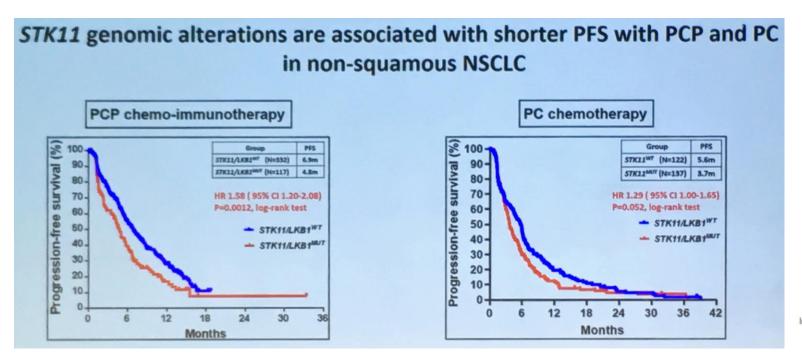
Outcomes in patients with non-squamous histology were generally consistent with the overall population

100	IO therapy		Chemotherapy	
	First-line (n=187)	Second-line (n=498)	First-line (n=1,687)	Second-line (n=683)
mOS, months (IQR)				
STK11m	14.2 (7.3-NA)	6.6 (2.4-20.1)	11.7 (5.1–25.2)	13.1 (7.2-25.2)
STK11wt	20.1 (7.4–42.8)	13.6 (4.8–27.9)	18.9 (8.0–40.1)	15.2 (6.5–38.0)
HR (95% CI)*	1.4 (0.8–2.3)	1.7 (1.3-2.2)**	1.4 (1.2-1.7)**	1.1 (0.8–1.4)
mPFS, months (IQR)				
STK11m	4.1 (2.7-9.8)	2.2 (1.5-3.7)	4.5 (2.1-7.5)	4.2 (2.3-6.7)
STK11wt	5.4 (2.4–17.0)	3.1 (1.8–7.7)	6.1 (2.8–11.9)	4.5 (2.1–10.1)
HR (95% CI)†	1.4 (0.9–2.0)	1.6 (1.2-2.0)**	1.4 (1.2-1.6)**	1.1 (0.8–1.4)

Similar associations were observed in patients with KRASm/STK11m

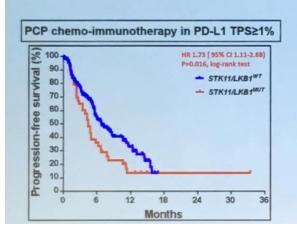
	KRASm/STK11m	KRASwt/STK11wt	KRASm/STK11m	KRASwt/STK11wt
	1L IO (n=17)	1L IO (n=149)	2L IO (n=56)	2L IO (n=371)
mOS, months (IQR)	10.0 (7.3-NA)	16.3 (6.0–29.7)	6.9 (2.4–21.9)	12.0 (4.3–26.9)
HR (95% CI)*	1.5 (0.7–2.9)		1.6 (1.2–2.3)	
mPFS, months (IQR)	4.1 (2.5–9.6)	4.4 (2.1–11.7)	2.2 (1.5-3.0)	2.8 (1.7-7.0)
HR (95% CI)†	1.3 (0.8–2.2)		1.8 (1.4–2.4)	
	1L chemotherapy (n=140)	1L chemotherapy (n=1,353)	2L chemotherapy (n=42)	2L chemotherapy (n=608)
mOS, months (IQR)	11.7 (5.2-23.5)	18.2 (8.1–38.4)	11.3 (7.2-25.2)	13.2 (6.2-33.5)
HR (95% CI)*	1.6 (1.3–1.9)		1.3 (0.9–1.8)	
mPFS, months (IQR)	4.5 (2.1–7.5)	6.0 (2.8-11.3)	4.4 (2.8-6.7)	4.3 (2.2-9.7)
HR (95% CI)†	1.4 (1.2–1.7)		1.1 (0.8–1.5)	

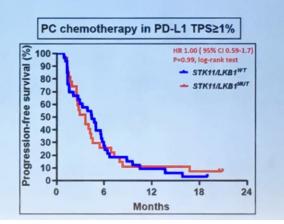
These findings were generally consistent in the sub-population of patients with non-squamous histology
 *Hazard ratio for death comparing KRASM/STK11m with KRAS/STK11m


STK11 mutations were prognostic of clinical outcomes in patients with mNSCLC

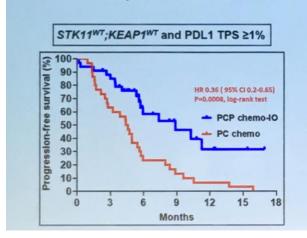
STK11/LKB1 Genomic Alterations Are Associated with Inferior Clinical Outcomes with Chemo-Immunotherapy in Non-Squamous NSCLC (MA11.11 Skoulidis F, et al)

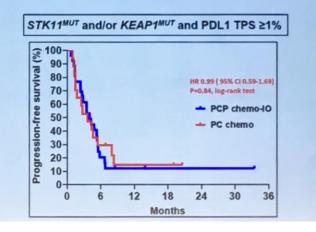
- 620 p non-Sq patients from 21 institutions in the US and Europe (retrospective studio)
 - Cohort A: 468 p: Platinum-Pemetrexed-Pembrolizumab (CPP):
 - 118 (25%) STK11/LKB1 alts
 - Cohort B: 152 p STK11/LKB1m treated with Platinum-Pemetrexed (CP)



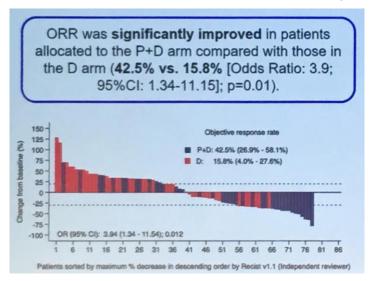


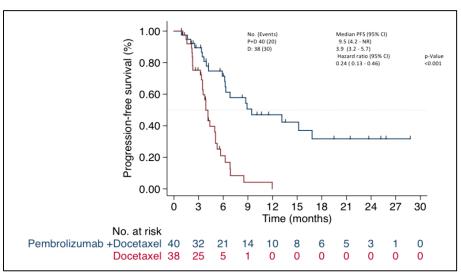
STK11/LKB1 Genomic Alterations Are Associated with Inferior Clinical Outcomes with Chemo-Immunotherapy in Non-Squamous NSCLC (MA11.11 Skoulidis F, et al)




STK11 genomic alterations are predictive of inferior clinical outcomes with PCP in PD-L1-positive non-squamous NSCLC as well as an adverse prognostic marker

Shorter PFS and lack of benefit from addition of pembrolizumab to CP chemotherapy in PD-L1-positive STK11 and/or KEAP1-mutant non-squamous NSCLC





Pembrolizumab Plus Docetaxel Increases PFS Compared with Docetaxel Alone in Previously Treated Advanced NSCLC Patients (MA11.03 Arrieta OG, et al)

- 78 p progressed to previous lines of therapy, immuno-naive
- Phase 2, Randomized 1:1:
 - Pembrolizumab plus Docetaxel (40 p)
 - Docetaxel (38 p)
- RR (1ry endpoint): 42.5% vs 15.8%, OR 3.9, p=0.01 (DoR: 11.0 vs 5.2 m, p=0.0257)
- PFS: 9.5 mo. vs 3.9 mo., HR 0.24, p<0.001

- Grade 1-2 pneumonitis: 22.5% vs 5.3%, p=0.029
- Any-grade hypothyroidism: 27.5% vs 2.6%, p=0.002

Phase I expansion cohort of Ramucirumab plus Pembrolizumab in treatment-naive adv. NSCLC (JVDF)(MA14.07 Herbst RS, et al)

- Treatment-naive, PD-L1+, Sq or nonSq: 26 patients
- Ramucirumab 10 mg/kg plus Pembrolizumab 200 mg every 21 d
- No additive toxicities
- 11 (42.3%) grade ≥3 TRAES: hypertension (15.4%) and myocardial infarction (7.7%). No patient discontinued because of TRAES

Summary of efficacy endpoints with R+P in treatment-naïve NSCLC.

		All Patients (N=26) ^a	PD-L1 weakly positive (n=9) ^b	PD-L1 strongly positive (n=16) ^c
	ORR, % (95% CI) CR, % (95% CI) PR, % (95% CI) SD, % (95% CI) PD, % (95% CI) NE, n (%)	42.3 (23.4, 63.1) 3.8 (0.1, 19.6) 38.5 (20.2, 59.4) 42.3 (23.4, 63.1) 11.5 (2.4, 30.2) 1 (3.8)	22.2 (2.8, 60.0) 0 (0, 33.6) 22.2 (2.8, 60.0) 66.7 (29.9, 92.5) 11.1 (0.3, 48.2) 0 (0)	56.3 (29.9, 80.2) 6.3 (0.2, 30.2) 50.0 (24.7, 75.3) 31.3 (11.0, 58.7) 6.3 (0.2, 30.2) 1 (6.3)
→	mPFS, mo (95% CI) 12-mo PFS, % (95% CI) 18-mo PFS, % (95% CI)	9.3 (4.0, NR) 45.0 (24.4, 63.6) 45.0 (24.4, 63.6)	4.2 (1.2, NR) 33.3 (7.8, 62.3) 33.3 (7.8, 62.3)	NR (4.0, NR) 56.2 (26.9, 77.6) 56.2 (26.9, 77.6)
→	mOS, mo (95% CI) 12-mo OS, % (95% CI) 18-mo OS, % (95% CI)	NR (13.2, NR) 72.5 (50.8, 85.9) 68.0 (45.9, 82.6)	NR (3.2, NR) 66.7 (28.2, 87.8) 53.3 (17.7, 79.6)	NR (11.3, NR) 75.0 (46.3, 89.8) 75.0 (46.3, 89.8)
	DCR, % (95% CI)	84.6 (65.1, 95.6)	88.9 (51.8, 99.7)	87.5 (61.7, 98.4)

