

LUNG CANCER UPDATES IASLC HIGHLIGHTS

7-10 DE SEPTIEMBRE 2019

Con la colaboración de:

Targeted Therapies Let's talk about and old friend... EGFR mut

Rosario García Campelo

Servicio de Oncología Médica

Hospital Universitario A Coruña, INIBIC

Con la colaboración de:

Despite the success of EGFR TKIs...

- Variability of the response...
- Variability of the response duration...
- Some patients do not respond...
- We are not curing anyboy...
- All patients progress...

CAN WE DO IT BETTER?

Options for 1st Line Treatment of EGFR M+ NSCLC

Options for 1st Line Treatment of EGFR M+ NSCLC

Strategy	Trial	Treatment	Median PFS, months			OS HR (95%CI)
2 nd or 1 st generation EGFR TKI	CTONG 091	Erlotinib vs. gefitinib	13.0 vs. 10.4	0.81 (0.62-1.05)	-	-
	LUX-Lung 7	Afatinib vs. gefitinib	11.0 vs. 10.9	0.73 (0.57-0.95)	27.9 vs. 24.5	0.86 (0.66-1.12)
	Archer 1050	Dacomitinib vs. gefitinib	14.7 vs. 9.2	0.59 (0.47-0.74)	34.1 vs. 26.8	0.76 (0.58-0.99)
1 st generation EGFR TKI + Antiangiogenic agents	JO25567	Erlotinib + bevacizumab vs. erlotinib	16.0 vs. 9.7	0.54 (0.36-0.79)	47.0 vs. 47.4	0.81 (0.53-1.23)
	NEJ026	Erlotinib + bevacizumab vs. erlotinib	16.9 vs. 13.3	0.61 (0.42-0.88)	-	-
	RELAY	Erlotinib + ramucirumab vs. erlotinib + placebo	19.4 vs. 12.4	0.59 (0.46-0.76)	NR vs. NR	0.83 (0.53-1.30) Not mature
EGFR TKI + EGFR MAb	IFCT 1503	Afatinib + cetuximab vs. afatinib	Stopped for futility (ASCO 2019 #9079)			
1 st generation EGFR TKI + chemotherapy	NEJ009	Gefinib + carbo-pemetrexed vs. gefitinib	20.9 vs. 11.2	0.49 (0.39-0.63)	52.2 vs. 38.8	0.60 (0.52-0.93)
	Noronha	Gefinib + carbo-pemetrexed vs. gefitinib	16 vs. 8	0.51 (0.39, 0.66)	NR vs. 17	0.45 (0.31-0.65)
3 rd generation EGFR TKI	FLAURA	Osimertinib vs. gefitinib or erlotinib	18.9 vs. 10.2	0.46 (0.37-0.57)	NR vs. NR	0.63 (0.45-0.88) Not mature (ESMO)

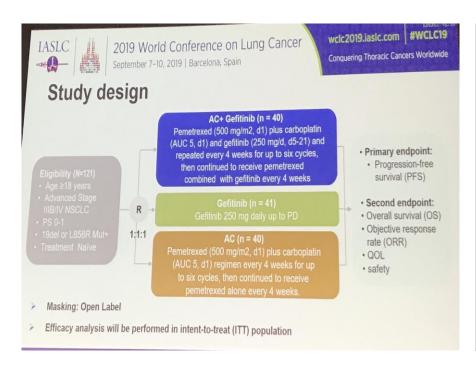
Yang JC et al., BJC 2017; Paz-Ares et al., Ann Oncol 2017; Mok et al., ICO 2018; Seto et al., ASCO 2018; Saito et al., Lancet Oncol 2019; Nakagawa et al., ASCO 2019; Nakamura et al., ASCO 2018; Noronha et al., ASCO 2019; Soria et al., NEJM 2018; Cortot, ASCO 2019

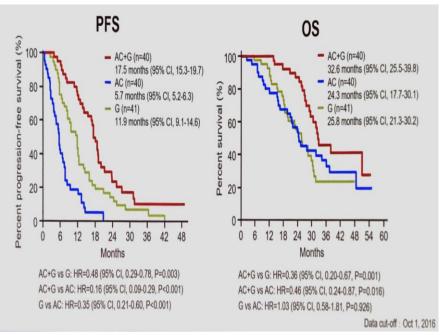
PRESENTED AT: 2019 ASCC

#ASCO19
Slides are the property of the author permission required for reuse.

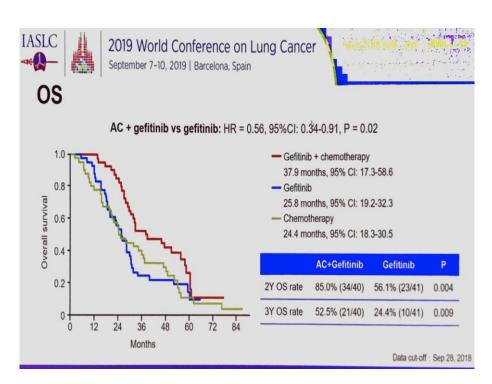
PRESENTED BY: Maurice Pérol, MD

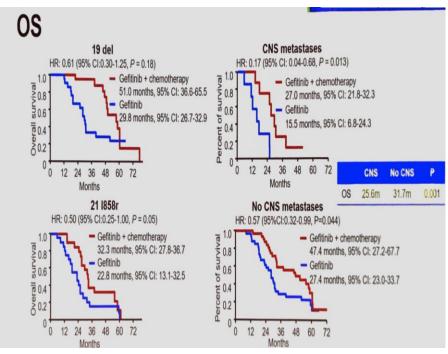
Iniciativa científica de:

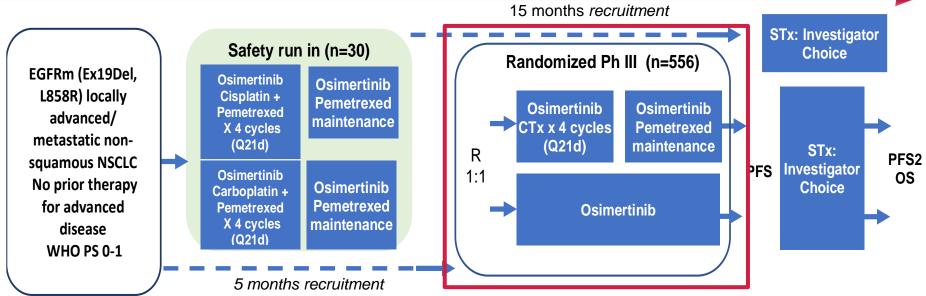



Is time for chemotherapy resurrection?

OA11.07 – Chemotherapy Plus EGFR-TKI as First-Line Treatment Provides Better Survival for EGFR Mutation NSCLC Patients: Update Data for NCT02148380







Osimertinib Plus Platinum/ Pemetrexed in Newly-Diagnosed Advanced EGFRm-Positive NSCLC; The Phase 3 FLAURA2 Study

Stratification factors:

- 1) Central or local method for tissue testing for potential differences in EGFR mutation detection
- 2) Race Chinese/Asian vs. Non-Chinese/Asian vs. Non-Asian
- 3) Baseline performance status based on the WHO PS.

Primary Objective

Progression-free survival (PFS) according to RECIST v1.1 by Investigator assessment

Secondary Objectives

Overall survival, Objective response rate, Duration of response Depth of response, Disease control rate, PFS2, QoL

PC02 - Combining with Chemo: Old School Is New Again (ID 84)

Type: Pro-Con Session | Track: Advanced NSCLC | Presentations: 0

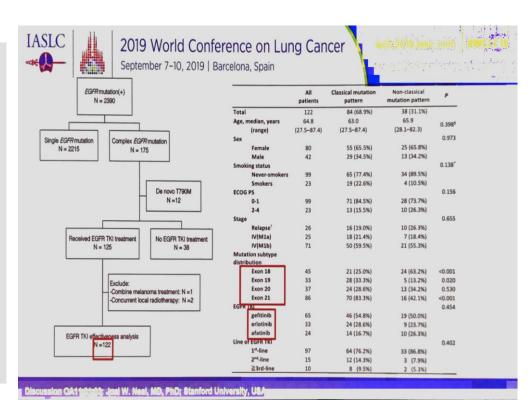
Moderators: Julien Mazieres, Javier De Castro Carpeno

Coordinates: 9/09/2019, 14:00 - 15:30, Vienna (2016)

PC02.01 - TKIs Should Be Given as Single Agent
14:00 - 14:20 | Presenting Author(s): Tony Mok

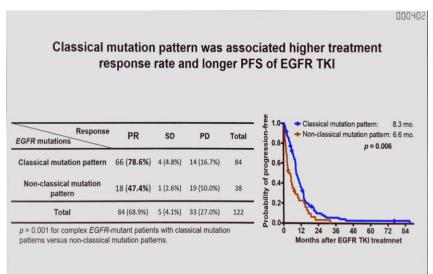
PC02.02 - TKIs Should Be Given with Chemo

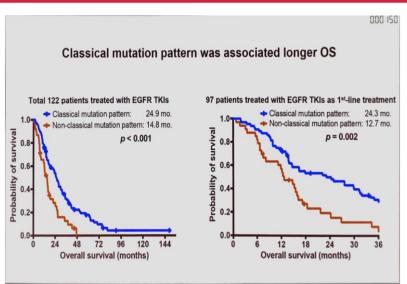
14:20 - 14:40 | Presenting Author(s): Rafael Rosell

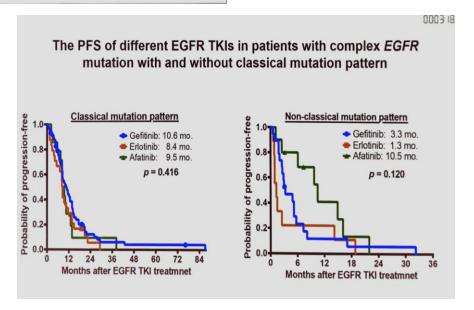


OA11.01 – Complex EGFR Mutations in Lung Adenocarcinoma

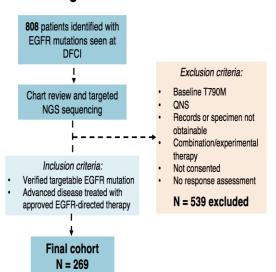
MATERIAL AND METHOD


- Collect specimens of lung adenocarcinoma from patients treated with EGFR TKIs were collected for EGFR sequencing from June 2005 to July 2018.
- EGFR mutation analysis by Sanger sequencing.
- Patients' clinical characteristics, EGFR mutation status, treatment response, progression-free survival (PFS) and overall survival (OS) were analyzed.
- Patients harboring tumor with de novo T790M were excluded.
- Definition:
 - > Complex EGFR mutations : two or more concomitant sites of EGFR mutations
 - > Complex mutation with "classical mutation pattern": contain del-19 or L858R
 - Complex mutation with "non-classical mutation pattern": contain neither del-19 nor L858R



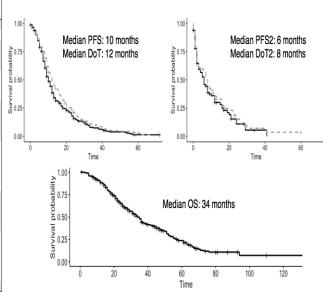


OA11.01 – Complex EGFR Mutations in Lung Adenocarcinoma



Genomic correlates of differential response to EGFR-directed tyrosine kinase inhibitors

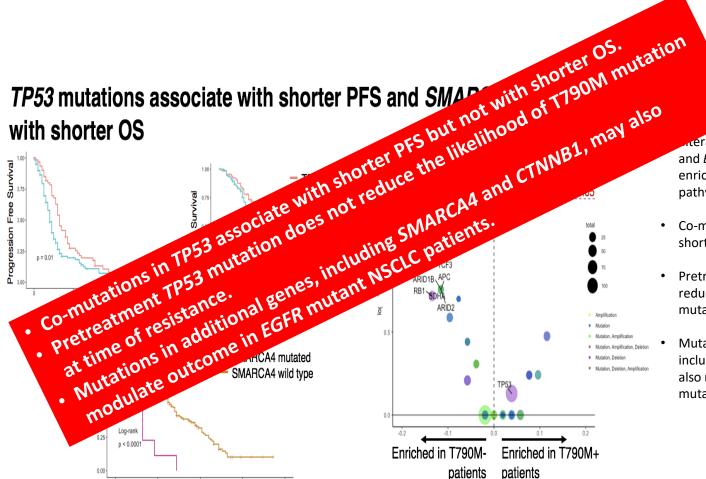
Cohort Diagram



Pre-TKI-1 specimen: N = 189TKI-1 resistance specimen: N = 86

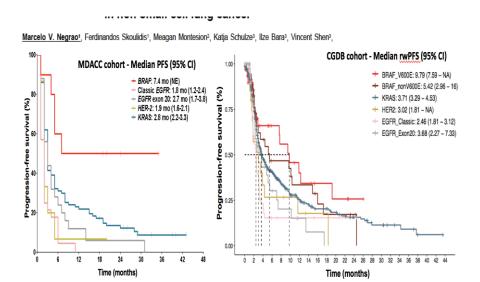
26 patients with paired pre/post specimens

Cohort characteristics


Cohort Characte	Cohort Characteristics					
Characteristic	No. (%)					
No of patients	269					
Med age at diagnosis	62 (29-93)					
Sex						
Male	80 (30)					
Female	190 (70)					
Smoking status						
Ever	107 (40)					
Never	163 (60)					
EGFR mutation						
Exon 19 deletion	137 (51)					
L858R	103 (38)					
Other	29 (11)					
Stage at diagnosis						
I, II	37 (14)					
II	22 (8)					
IVa	69 (26)					
Ⅳb	141 (52)					
Line of therapy, first TKI						
First	226 (84)					
Second	39 (14)					
Third or higher	4 (1)					
1 st line TKI						
Erlotinib	255 (94)					
Afatinib	9 (3)					
Gefitinib, Icotinib	3 (1)					
Osimertinib	2 (1)					
Received 2 rd /3 rd line Osimertinib	94 (35)					

TP53 mutations associate with shorter PFS and SMARI with shorter OS

to alterations in MET, postant tumors are enriched for nerations in cell cycle genes CDKN2A and BUB1B, with a trend toward enrichment in cell cycle genes on pathway analysis.


- Co-mutations in TP53 associate with shorter PFS but not with shorter OS.
- Pretreatment TP53 mutation does not reduce the likelihood of T790M mutation at time of resistance.
- Mutations in additional genes, including SMARCA4 and CTNNB1, may also modulate outcome in EGFR mutant NSCLC patients

IO IN SPECIFIC ONCOGENIC DRIVEN NSCLC

BRAF mutations are associated with increased benefit from PD-1/PD-L1 blockade compared with other oncogenic drivers in non-small cell lung cancer

Dramatic responses to Immune Checkpoint Inhibitors in MET exon 14 skipping mutation (METex14mut) Non Small Cell Lung Cancers

	MET mutation	PDL1 expres sion	Time between diagnosis and ICI	Time under ICI	Tumor response
Α	C.3082+1 G>A	70%	5,5 months 12 months when rechallenging	28 months (ongoing)	Complete
В	C.3082+1 G>C	20%	10,5 months	23 months	Partial
С	C.3082 G>A Kras c.34G>A (minority)	40%	4,5 months	25 months	Complete
D	C.2942- 51_2961del	40%	34 months	42 months (ongoing)	Partial
E	C.3082+1 G>C	90%	5 months	15 months (ongoing)	Partial
F	NA	NA	24 months	23 months (ongoing)	Partial

