Novedades y Claves en Cáncer de Pulmón 2021

•

Biomarcadores

Paloma Martín Martorell

Hospital Clínico Universitario de Valencia

Organizado por:

A TRATAR...

NSCLC

- TMB and advanced NSCLC
 - TMB and B-FAST (Diadzuszko R, ESMO 2021)
 - TMB in 9LA (Paz Ares L, ESMO 2021)??
 - TMB adjusted to tumoral load (Nie W, WCLC 2021)

SCLC

- HLA genotyping in CASPIAN (Garassino M, WCLC 2021)

Molecular subgroups

- Ex 20 EGFR

Biomarker: definition

Biomarker: "a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention." (National Institute of Health Biomarkers Definitions Working Group)

> Gecp Iung cancer

NSCLC - TMB as a biomarker

lung cancer research

CHEMOTHERAPY

G

lung cancer research

Burdett JCO 2008, Fukuoka J Clin Oncol. 2011, Solomon NEJM 2014, Planchard Lancet 2017, Drilon NEJM 2020, Skoulidis NEJM 2021

Borghaei NEJM 2021, Mok Lancet 2019, Gadgeel JCO 2020, Gray JTO 2020, Provencio Wakelee

PD-L1 ≥1 %

PD-L1 <1 %

CHECKMATE 057

KEYNOTE 001

Garon JCO 2019, Borghaei JCO 2021.

- Amount of tissue and representability
- Archival vs new biopsy
- Expression variability according to stage
- Tumor staining vs tumor and ME staining
- Dynamic changes to previous therapy

Hirsch JTO 2017, Illie Ann Oncol 2016, Herbst Ann Oncol 2019

Tumor immunogenicity and TMB

Not all are created alike...

Tumor mutation may arise as a result of DNA damage from exogenous factors (tobacco smoke, ultraviolet light, DNA-damaging therapies), or from defects in DNA repairing machinery (MMR, homologous recombinantion repair, base excision repair)

Organizado por:

TMB and PD-L1 association

lung cancer research

TMB predictive value in IO monotherapy

CHECKMATE 026

Progression-free Survival among Patients with High Tumor-Mutation Burden

Progression-free Survival among Patients with Low or Medium Tumor-Mutation Burden

Organizado por:

TMB: predictive value monotherapy IO

KEYNOTE 010 and KEYNOTE 042

Herbst, ESMO 2019.

lung cancer research

TMB: predictive vs prognostic

		HR (95% CI)
	Without/before ICI After ICI	Without/before ICI	After ICI
NSCLC		1.33 (1.01–1.76)	0.63 (0.48-0.83)
Breast	•	1.67 (1.04-2.67)	0.73 (0.28-1.89)
Colorectal	• · · · · • · · · · · · · · · · · · · ·	1.02 (0.70-1.49)	1.40 (0.57-3.43)
Pancreatic	▶ ► ►	1.61 (1.21-2.14)	1.70 (0.64-4.51)
Sarcoma	► F	2.15 (1.46-3.16)	1.94 (1.05-3.61)
Prostate	► ● →	1.50 (0.78-2.87)	2.31 (0.22-24.05)
CNS		0.81 (0.51-1.29)	0.98 (0.55-1.74)
Hepatobiliary	•	1.10 (0.72-1.68)	1.51 (0.71-3.22)
Ovarian	F F F F F F F F F F F F F F F F F F F	0.65 (0.26-1.63)	1.27 (0.36-4.42)
Cutaneous melanoma		1.35 (0.15-12.10)	0.51 (0.25-1.04)
Gastric	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►	1.29 (0.65-2.57)	0.59 (0.27-1.27)
Renal	• • • •	1.08 (0.32-3.71)	0.52 (0.24-1.14)
Head and neck		2.11 (0.80-5.56)	0.76 (0.33-1.76)
Esophageal	• •	1.37 (0.53-3.55)	0.50 (0.15-1.67)
SCLC	• • • •	0.71 (0.29–1.71)	0.50 (0.19-1.32)
	0.15 0.25 0.50 1.00 2.00 4.00 6.0 HR	0	

N= 2.084 pts, 20%

High TMB could:

Increase the likelihood of mutagenic drivers or resistance mutations

Increase the intratumoral heterogeneity under selective pressure

Represent chromosomal instability

Organizado por:

tTMB vs bTMB

OAK and POPLAR

BEP: 78 % (vs aprox. 40-42 % in tTMB in previous studies)

Organizado por:

G

Kim ESMO 2018, Socinsky ESMO 2019

lung cancer research

B-FAST: prospective validation of bTMB as a biomarker (ESMO 2021)

Atezolizumab vs Platinum-Based Chemotherapy in Blood-Based Tumour Mutational Burden–Positive NSCLC: Results of the Blood First Assay Screening Trial (BFAST) Phase 3 Cohort C

Rafal Dziadziuszko,¹ Solange Peters,² Shirish M. Gadgeel,³ Michael Mathisen,⁴ Sarah M. Shagan,⁴ Enriqueta Felip,⁵ Alessandro Morabito,⁶ Parneet Cheema,⁷ Manuel Cobo Dols, ⁸ Zoran Andric,⁹ Carlos H. Barrios,¹⁰ Masafumi Yamaguchi,¹¹ Eric Dansin,¹² Pongwut Danchaivijitr,¹³ Melissa Johnson,¹⁴ Silvia Novello,¹⁵ David R. Gandara, ¹⁶ Erica Schleifman,⁴ Jin Wang,⁴ Tony Mok¹⁷ <u>Primary objective:</u> PFS as assessed by the investigator in bTMB ≥16 mut/MB

BFAST Cohort C study design

Organizado por:

lung cance

Dziadziuszko, ESMO 2021

B-FAST (ESMO 2021)

PFS and OS in the bTMB ≥16 population

Although progression rates were initially higher in the atezo vs chemo arm, PFS benefit was seen with atezo after 4 months

Confirmed ORR for bTMB ≥16 was 25.5% (95% CI: 18.7, 33.4) for atezo vs 17.8% (12.0, 25.0) for chemo

to por:

lung cance research

Ge

B-FAST (ESMO 2021)

Exploratory analysis of PFS and OS in bTMB ≥13.6 mut/Mb^a **■ESMO**^{Congress} population by FoundationOne Liquid companion diagnostic

The assays were highly concordant, with PPA (82.9%), PPV (89.4%), NPA (91.5%) and NPV (86.0%)

High concordance with other bTMB assays F1L CDx

Possible explanations

Immune response may depend on....

- HLA homozygosity or LOH (Agnanostou)
- CD8+ T cell infiltration
- Clonal composition (Agnanostou)
- SNVs, synonimous vs only non-synonimous mutations, indels, contribution of mutations types and mutational signatures (Samstein, Wang)
- Antigenicity of generated epitopes (Anagnostou, Samstein, Alexandrov)
- Tumor simple purity (Agnastou)
- Tumor mass load (Wei)
- Technique: WES, NGS, TMB limited panels (Samstein, Merino)

Geep lung cancer

CHECKMATE 012 and CHECKMATE 568

MYSTIC and NEPTUNE

A Overall survival in the population with bTMB ≥20 mut/Mb

✓ PFS

21 August 2019 07:00 BST

Durvalumab vs chemotherapy: HR, 0.72 (95% CI, 0.50-1.05) Durvalumab + tremelimumab vs chemotherapy: HR, 0.49 (95% CI, 0.32-0.74) Durvalumab + tremelimumab vs durvalumab: HR, 0.74 (95% CI, 0.48-1.11)

B Overall survival in the population with bTMB <20 mut/Mb

Durvalumab vs chemotherapy: HR, 0.93 (95% CI, 0.74-1.16) Durvalumab + tremelimumab vs chemotherapy: HR, 1.16 (95% CI, 0.93-1.45) Durvalumab + tremelimumab vs durvalumab: HR, 1.22 (95% CI, 0.98-1.52)

AstraZeneca today announced final overall survival (OS) results from the Phase III NEPTUNE trial, a randomised, openlabel, multi-centre, global trial of *Imfinzi* (durvalumab) in combination with tremelimumab, an anti-CTLA4 antibody, vs. standard-of-care (SoC) platinum-based chemotherapy in previously-untreated Stage IV (metastatic) non-small cell lung cancer (NSCLC) patients. The trial was performed in an all-comers population, and the primary analysis population was patients with a high tumour mutational burden (TMB). TMB is a measurement of the number of mutations within the genome (DNA) of a tumour, and tumours with high levels of TMB may be more visible to the immune system.^{1,2}

In the primary analysis population of patients whose blood TMB was 20 or more mutations per megabase (mut/Mb), the combination of *Imfinzi* and tremelimumab did not meet the primary endpoint of improving OS compared to SoC chemotherapy. The safety and tolerability profile for the combination of *Imfinzi* and tremelimumab was consistent with previous trials.

organizado por Geecp Il-of-imfinzi-plus-

Rizvi JAMA 2020. https://www.astrazeneca.com/media-centre/press-releases/2019/update-on-the-phase-iii-neptune-trial-of-imfinzi-plus-tremelimumab-in-stage-iv-non-small-cell-lung-cancer-21082019.html

		NIVO + IPI n = 583	Chemo n = 583	HR	HR (95% CI)
Randomize	d groups			Stratified	Stratified
	All randomized (N = 1166)	17.1	13.9	0.73	
PD-L1	PD-L1 < 1% (n = 373)	17.2	12.2	0.62	—
	PD-L1 ≥ 1% (n = 793)	17.1	14.9	0.79 ^a	—
Additional	exploratory subgroups analyses ^{b,c}			Unstratified	Unstratified
	1–49% (n = 396)	15.1	15.1	0.94	
PD-L1	≥ 50% (n = 397)	21.2	14.0	0.70	—
TMB ^d	low, < 10 (n = 380)	16.2	12.6	0.75	—
(mut/Mb)	high, ≥ 10 (n = 299)	23.0	16.4	0.68	—• —
				0.25	0.5 1

Organizado por:

9LA (ELCC 2021)

Secondary objective

 $\times\,\text{OS}$

Foundation One CDx

OS in tTMB subgroups

PFS in tTMB subgroups

Organizado por:

9LA (ELCC 2021)

Guardant OMNI

bTMB ≥ 16 mut/MB discriminates w/r to PFS but not OS

bTMB ≥ 20 mut/MB does discriminate for either

Organizado por:

research

bTMB

mut/Mb	n	Unstratified OS HR	Unstratified OS HR (95% CI)
bTMB ≥ 16 mut/	/МЬ		
PD-L1 < 1%	68	0.51	
PD-L1 ≥ 1%	117	0.61	i
PD-L1 1-49%	60	0.64	
PD-L1 ≥ 50%	57	0.57	
bTMB < 16 mut/	/Mb		
PD-L1 < 1%	126	0.73	
PD-L1 ≥ 1%	178	0.70	
PD-L1 1-49%	106	0.67	
PD-L1 ≥ 50%	72	0.70	
$bTMB \ge 20 mut/$	Mb		
PD-L1 < 1%	49	0.49	
PD-L1 ≥ 1%	83	0.55	'
PD-L1 1-49%	46	0.60	
PD-L1 ≥ 50%	37	0.45	
bTMB < 20 mut/	МЬ		
PD-L1 < 1%	145	0.71	
PD-L1 ≥ 1%	210	0.73	—•– ⁺
PD-L1 1-49%	118	0.71	
PD-L1 ≥ 50%	92	0.73	
		0.0 NIVO	0.5 1.0 1. + IPI + chemo ← → Cher

Organizado por:

Ge

lung cancer research

With so many uncertainties...

Metanalysis!

B					PFS			
				Hazard Ratio	110	Hazard Ratio		
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed, 95%	CI	
CheckMate-026	-0.478	0.247	7.1%	0.62 (0.38-1.01)				
CheckMale-227	-0.545	0.149	19.6%	0.58 (0.43-0.78)				
IMpower 110	-0.598	0.262	6.3%	0.55 (0.33-0.92)				
KEYNOTE-042	-0.288	0.122	29.3%	0.75 (0.59-0.95)		-		
MYSTIC - Diversus CT blood	-0.261	0.198	11.1%	0.77 (0.52-1.14)				
MYSTIC - Diversus CT issue	-0.151	0.225	8.6%	0.86 (0.55-1.34)				
MYSTIC - D+T versus CT bloo	-0.635	0.221	8.9%	0.53 (0.34-0.82)				
MYSTIC - D+T versus CT issu	e -0.03	0.22	9.0%	0.97 (0.63-1.49)		+		
Total (95% CI)			100.0%	0.69 (0.61-0.79)				
Heterogeneity: Chi2 = 7.85, df	f = 7 (P = 0.35); 2 =	11%					- 10	
Test for overall effect: Z = 5.5	2 (P < 0.00001)				0.01 0.1	юст	10	100

C				Hazard Ratio	OS	Hazard	Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed,	95% CI	
CheckMate-026	0.095	0.275	5.9%	1.10 (0.64-1.89)				
CheckMate-227	-0.386	0.148	20.3%	0.68 (0.51-0.91)				
IMpower 110	-0.288	0.304	4.8%	0.75 (0.41-1.36)			-	
KEYNOTE-042	-0.478	0.13	26.3%	0.62 (0.48-0.80)				
MYSTIC - Diversus CT blood	-0.329	0.189	12.4%	0.72 (0.50-1.04)				
MYSTIC - Diversus CT issue	-0.357	0.207	10.4%	0.70 (0.47-1.05)				
MYSTIC - D+T versus CT bloc	d -0.713	0.214	9.7%	0.49 (0.32-0.75)				
MYSTIC - D+T versus CT issu	e -0.329	0.209	10.2%	0.72 (0.48-1.08)				
Total (95% CI)			100.0%	0.67 (0.59-0.77)		•		
Heterogeneity: Chi ² = 6.17, d Test for overall effect: Z = 5.8	$f = 7 (P = 0.52); ^2 =$ 19 (P < 0.00001)	0%			0.01 0.	1 1	10	100

Figure 2. Meta-analysis results including forest plots of (A) RR of ORR, (B) HR of PFS and (C) OS in patients with high TMB assigned to receive first-line IO regimens versus CT.

			2
		1	C
	2		

Study	TMB-evaluable patients, n (%)	Treatment arm	Number of patients	Detection method	Threshold defined	Sample
KEYNOTE-042 ²⁸	793/1274 (62.2)	Pembrolizumab versus CT	180 versus 165 (TMB-high); 234 versus 214 (TMB-low)	WES	175 mut/ exome	Tissue
CheckMate 227 part 1 ³¹ -2 ¹⁰	679/1166 (58.2)	Nivolumab + ipilimumab versus CT	139 versus 160 (TMB-high); 191 versus 189 (TMB-low)	NGS (FoundationOne®CDx)	10 mut/mb	Tissue
CheckMate 026 ¹³	312/541 (57.6)	Nivolumab versus CT	47 versus 60 (TMB-high); 111 versus 94 (TMB-low)	WES	243 missense mut	Tissue
MYSTIC ³²	315/744 (42.3)	Durvalumab + tremelimumab versus CT	60 versus 67 (TMB-high); 104 versus 84 (TMB-low)	NGS (FoundationOne [®] CDx)	10 mut/Mb	Tissue
MYSTIC ³²	296/746 (39.6)	Durvalumab versus CT	60 versus 67 (TMB-high); 85 versus 84 (TMB-low)	NGS (FoundationOne [®] CDx)	10 mut/Mb	Tissue
MYSTIC ³²	523/744 (70.2)	Durvalumab + tremelimumab versus CT	64 versus 70 (TMB-high); 204 versus 185 (TMB-low)	NGS (Guardant OMNI [®])	20 mut/Mb	Blood
MYSTIC ³²	541/746 (72.5)	Durvalumab versus CT	77 versus 70 (TMB-high); 209 versus 185 (TMB-low)	NGS (Guardant OMNI [®])	20 mut/Mb	Blood
IMpower110 ³³	389/554 (70.2)	Atezolizumab versus CT	87 (TMB-high); 302 (TMB-low)	NGS (FoundationOne®CDx)	16 mut/Mb	Blood

Organizado por:

Galvano. ESMO Open 2021

Organizado por:

Yufang, JAMA Network Open 2019

Improving TMB as a biomarker

ctDNA mass adjused bTMB and durable clinical benefit (DCB*) in OAK & POPLAR studies

DCB defined as PFS at 6 months

SCLC - TMB as a biomarker

lung cancer research

Biomarkers in SCLC

IMPOWER 133

CHECKMATE 032

-	Median (OS (months)		OS Hazard Rati
Subgroup	Atezo + CP/ET	Placebo + CP/ET		(95% CI)
Male (n = 261) Female (n = 142)	12.2 13.6	10.9 9.5		0.83 (0.63, 1.10) 0.64 (0.43, 0.94)
< 65 years (n = 217)	12.1	11.5		0.94 (0.68, 1.28)
≥ 65 years (n = 186)	14.4	9.6	••••••••••••••••••••••••••••••••••••••	0.59 (0.42, 0.82)
ECOG PS 0 (n = 140) ECOG PS 1 (n = 263)	16.8 11.3	12.6 9.3		0.73 (0.48, 1.10) 0.78 (0.60, 1.03)
Brain metastases (n = 35) No brain metastases (n = 368)	8.5 12.6	9.7 10.4	⊢	0.96 (0.46, 2.01) 0.74 (0.58, 0.94)
Liver metastases (n = 149) No liver metastases (n = 254)	9.3 16.3	7.8 11.2		0.75 (0.52, 1.07) 0.76 (0.56, 1.01)
bTMB < 10 (n = 134) bTMB ≥ 10 (n = 212)	11.8 14.9	9.4 11.2		0.73 (0.49, 1.08 0.73 (0.53, 1.00
oTMB < 16 (n = 266) oTMB ≥ 16 (n = 80)	12.5 17.1	10.0 11.9		0.79 (0.60, 1.04) 0.58 (0.34, 0.99)
ITT (N = 403)	12.3	10.3	⊢	0.76 (0.61, 0.96
A total of 57 patients had unknown b	oTMB score.	0.25	Hazard Ratio ^a	2.5
bTMB, blood tumour mutational burg ^a Hazard ratios are unstratified for pa CCOD 24, January 2019	den. atient subgroups and str	ratified for the ITT.	Favours Atezo + CP/ET Favours: Pla	acebo + CP/ET

Organizado por:

Hellman Cancer Cell 2018, Reck ESMO 2019

CASPIAN

HR (95% CI)

0.73 (0.591–0.910) 0.65 (0.482–0.864) 0.64 (0.462–0.897) 0.69 (0.370–1.283) 0.66 (0.491–0.896) 0.46 (0.119–1.793)

Organizado por:

Paz Ares ESMO 2019

MA16.06: Durvalumab ± Tremelimumab + Platinum-Etoposide in 1L ES-SCLC: Exploratory Analysis of HLA Genotype and Survival in CASPIAN – Garassino MC, et al

	D + T + EF	P (n=142)
DQB1*03:01 status	Positive	Negative
n	58	84
mOS, mo (95%CI)	14.9 (10.4, 21.2)	10.5 (7.6, 12.9)
HR (95%CI)	0.59 (0.3	9, 0.88)
OS <18 mo, n	32	62
OS ≥18 mo, n	26	22
Odds DQB1*03:01 present (OS ≥18 vs. <18 mo)	2.2	28

D + EP (n=143)						
Positive	Negative					
57	86					
14.7 (11.5, 16.3)	14.3 (9.4, 17.2)					
0.93 (0.63, 1.37)						
37	55					
20	31					
0.96						

EP (n	=129)
Positive	Negative
38	91
9.7 (7.7, 11.7)	10.5 (8.9, 11.3)
0.94 (0.	61, 1.40)
31	73
7	Org unz ado por:
0.	92
	Gecp
	lung cance

research

Garassino MC, et al. WCLC 2021. J Thorac Oncol 2021;16(suppl):Abstr MA16.06

EGFR exon 20 insertions

EGFR exon 20 – response according to variants

EGFR ex 20 ins 4-10 % of all EGFR mut

- <30% ORR with 1st and 2nd gen TKI, PFS 3 months
- 50% ORR with CT/IO but PFS 4-6 months
- Very limited efficacy of IO in 2nd L

lung cance

Yang ASCO 2021

EGFR exon 20 – response according to variants

Phase I/II mobocertinib in pretreated pts

lung cancer research Mobocertinib Ph I/II PPP and EXCLAIM

Active CNS metastases: Untreated or treated and progressing; measurable CNS metastases ≥10 mm in longest diameter by contrast-enhanced MRI

CNS, central nervous system; ECOG PS, Eastern Cooperative Oncology Group Performance Status, EGFR, epidemial growth factor receptor gene; HER2, human epidermal growth factor receptor 2 gene; MRI, magnetic resonance imaging; NSCLC, non-small cell lung cancer, ORR, objective response rate; QD, once daily; PK, pharmacokinetics; RECIST v1.1, Response Evaluation Onteria in Solid Tumors version 1.1; TKI, tyrosine kinase inhibitor

lung cancer research

Ramalingam ASCO 2021

TAS6417 Ph I/IIa

Pietrowska ASCO 2021

lung cancer research

Organizado por:

G

WUKONG1 and WUKONG 2 - Ph I

Mutation subtypes	ORR# n (%)	DCR n (%)
V769_D770insASV (N = 20)	8 (40.0)	19 (90.0)
D770_N771insSVD (N = 10)	6 (60.0)	9 (90.0)
Other subtypes* (N = 18)	7 (38.9)	15 (83.3)
Unknown subtypes (N = 5)	0 (0.0)	4 (80.0)
All (N = 53)	21 (39.6)	46 (86.8)

Data was analyzed at dose levels with observed response (\geq 100 mg);

#: Confirmed ORR

*: Other subtypes of *EGFR* Exon20 insertion include: V774_C775insHV, D770delinsDV, V769_D770insASV, H773_V774insH, H773_V774insAH, D770_N771insG, H773_V774insPHPH and N771_P772insSVDN

Detection method: PCR vs NGS

Estimation of missed EGFR ex.20 insertions using 6 PCR platforms vs NGS

Amivantamab - FDA approved May 2021. EMA pending approval Mobocertinib - FDA breakthrough therapy dessignation

GecP

lung cance

Detection method

Analysis of real-world genomic data from 2 US-based datasets: 48-50 % PCR detection rate

40 unique ex 20 variants identified Only 4/9 most common variants would be identified by PCR

102 unique ex 20 variants identified Only 4/17 most common variants would be identified by PCR

Bauml WCLC 2021

CONCLUSIONS

NSCLC

- 1. TMB cannot (yet) replace PD-L1 as the main biomarker to choose immune-based monotherapy in 1st line
- 2. TMB does not discriminate clinical benefit in chemo-immune therapy combinations 1st line (as neither does PD-L1)

SCLC

- 1. No biomarkers as yet to choose candidates for chemo-immune therapy combination 1st line
- 2. The role of HLA genotyping is yet to be defined, but may identify a subgroup benefitting from CT/double IO combination

Molecular subgroups - ex 20 insertions

- 1. All ex 20 variants seem to be benefit from specific inhibition. Perhaps near loop variants show more benefit, but is to be defined in Phase III trials
- 2. NGS should be the preferred diagnostic tool. High heterogenity

