

Introducción

J.L. González Larriba

Hospital Clínico San Carlos Universidad Complutense Madrid

Con la colaboración de:

Conflict of Interest Disclosure

✓ Honoraria

✓ MSD Oncology, Pfizer, Astellas Pharma, Roche, Novartis, Janssen-Cilag, Bristol-Myers Squibb, Astra Zeneca

✓ Consulting of Advisory Role

✓ Janssen-Cilag, MSD Oncology, Bristol-Myers Squibb, Boehringer Ingelheim

✓ Speaker's Bureau

✓ MSD Oncology

✓ Research Funding

✓ Miratti Therapeutics, Astra Zeneca, Bayer, OncoMed, Astellas Pharma, Janssen-Cilag, Roche, Abbvie, Boehringer-Ingelheim, Pfizer, PharmaMar, Bristol-Myers Squibb, Novartis, Celgene, Ignyta

✓ Travel, Accomodations, Expenses

✓ Bristol-Myers Squibb, Janssen-Cilag, Takeda, Pfizer, MSD Oncology, Roche

Incidence and Relevance of Lung Cancer

✓ Lung Cancer is the most important cause of cancer death in the world (21%)

✓ 85% are NSCLC

✓ Spain:

✓ Incidence: 31,000 cases/year

✓ Deaths: 20,000/year

Most relevant advances in recent years

- ✓ Confirmation of the effectiveness of PC screening with low-dose CT in a population at risk, currently non-smokers
- ✓ Relevance of molecular diagnosis
- ✓ Therapeutic advances
- ✓ New, more limited surgical techniques
- ✓ Role of radiotherapy in oligometastatic disease
- ✓ Consolidation of Immunotherapy
- ✓ Further development of targeted treatments

Metastatic Lung Cancer

Advances in Immunotherapy and **Targeted Therapies**

Long Survivors: 20 – 25% of pat. alive to 5 years

AACR ANNUAL MEETING 2022

April 8 - 13, 2022 Ernest N. Morial Convention Center New Orleans, Louisiana

MOLECULAR TESTING FOR PATIENTS WITH ADVANCED OR METASTATIC NSCLC

CHOOSING BIOMARKERS

- NCCN Guidelines recommend testing for the full panel of *all 10 markers* in NSCLC with an adenocarcinoma component. Testing should be considered for squamous cell carcinomas.
- **Broad panel testing** is recommended where possible (typically performed by NGS)

RECOMMENDED METHODS FOR MOLECULAR TESTING

		NGS*	PCR**	IHC	FISH
EGFR	Exon 19 del or L858R, S768I, L861Q, G719X, Exon 20 insertion	✓	√		
KRAS	G12C	✓	✓		
ERBB2	Mutagenic/likely mutagenic mutations	✓	✓		
BRAF	V600E	✓	✓	✓ Some data supports utility	
ALK	Rearrangement	✓	✓	✓	✓
ROS1	Rearrangement	✓	✓	✓ With confirmatory testing	✓
RET	Rearrangement	✓	✓		✓ May under-detect
MET	Exon 14 skipping	✓	✓		
NTRK1/2/3	Rearrangement	✓	✓	✓ Complicated by baseline expression	✓ 3 probe sets needed
PD-L1	Positive IHC			✓	

^{*}CONSIDER INCLUDING RNA-BASED TESTING TO IMPROVE DETECTION OF REARRANGEMENTS AND EXON SKIPPING

FISH = fluorescence in situ hybridization; IHC = immunohistochemistry; PCR = polymerase chain reaction; NGS = next-generation sequencing NCCN. Clinical Practice Guidelines: Non-Small Cell Lung Cancer. Version 4.2022. www.nccn.org. Accessed 09/15/2022; PRIME data on file, 2022.

^{**}PCR MAY NOT DETECT NOVEL FUSION PARTNERS

PLASMA-BASED DNA TESTING

Plasma ctDNA testing
+
Tissue-based molecular testing

Consider ctDNA sequencing in parallel with tissue-based testing to increase detection of genetic alterations

- Plasma ctDNA testing:
 - May provide results faster than tissuebased testing
 - > Can be useful when there is limited tissue sample for testing
 - Has been shown to identify oncogenic biomarkers that would otherwise not be detected in patients with metastatic NSCLC

NCCN guidelines recommend plasma-based circulating tumor (ctDNA) testing:

- If patient is medically unfit for invasive tissue sampling
- 2. If there is insufficient material for tissue-based molecular analysis
- 3. If tissue-based testing does not assess all recommended biomarkers

Overall Treatment Paradigm for Advanced NSCLC Based on Molecular Biomarker Status

- 1. Pathologic subtype
- 2. Comprehensive genomic profiling
- 3. PD-L1 expression assessment

Biomarker-Positive

Biomarker-Negative

Established genomic biomarkers that must receive targeted first-line therapy:^a

EGFR ROS1 NTRK
ALK KRAS METex14

Emerging genomic biomarkers that may receive targeted first-line therapy:^a

HER2
MET amplification

PD-L1 expression ≥50%:

Anti-PD1 Anti-PD1/ChT Anti-PD1/ChT/

PD-L1 expression 1% to 49%:

Anti-PD1/ChT Anti-PD1/ChT/ Anti-PD1/ Anti-CTLA4 Anti-CTLA4

PD-L1 expression <1%:

Anti-PD1/ChT Anti-PD1/ChT/ Anti-CTLA4

a Where available.

Recommendations for Molecular Testing in NSCLC

- NCCN and ESMO testing recommendations are similar for metastatic NSCLC (NCCN Category 1 or 2A; ESCAT Level I or II)
- Multigene panel NGS testing can simultaneously screen for multiple actionable oncogenic drivers to identify the most appropriate course of therapy

Molecular biomarkers tested for:a,b,1-3

EGFR ROS1 NTRK
ALK KRAS^{G12C} METex14 HER2^c
BRAF^{V600E} RET MET amp^c

Immune biomarker tested for:b,1
PD-L1

^a Molecular testing is recommended for patients with metastatic adenocarcinoma, large cell, and NSCLC not otherwise specified; testing can be considered for patients with metastatic squamous cell carcinoma.

^b Recommendations for certain individual biomarkers that should be tested but no endorsement of any specific commercially available biomarker assays or commercial laboratories.

^c Emerging biomarker.

TARGETED THERAPY LANDSCAPE

research

Prevalence of KRAS Mutations

Cancer Type ¹	KRAS Frequency, %
Pancreatic ductal adenocarcinoma	86
Colorectal adenocarcinoma	41
Lung adenocarcinoma	32

Population ²	KRAS Frequency, %	
Overall	31	
Never smokers	8	
Former smokers	39	
Smokers	35	

KRAS Alterations

Approved and Emerging Targeted Therapy for KRAS^{G12C}–Mutant NSCLC

Sotorasib (Phase 1/2 CodeBreaK100) ¹	Previously Treated Patients With Mets (N = 124)
ORR	37.1%
Median DOR	11.1 mo
Median PFS	6.8 mo
Median OS	12.5
Occurrence of TRAE	69.8

Adagrasib (Phase 1/2 KRYSTAL-1) ²	Previously Treated Patients With Mets (N = 112)
ORR	42.9%
Median DOR	8.5 mo
Median PFS	6.5 mo
Median OS	12.6 mo
Occurrence of TRAE	97.4

Investigational agents are included; refer to local regulatory bodies for status. Note that these data are from multiple trials and cannot be directly compared. See publications/references for trial information.

Emerging Monotherapy for KRASG12C—Mutant NSCLC

Phase 1a Trial of GDC-6036 Monotherapy in Previously Treated Patients: Antitumour Activity

TRAE resulting in modification (interruption/reduction/discontinuation; N = 59 NSCLC), 36%

Investigational agent is included; refer to local regulatory bodies for status. Note that 8 of 57 patients not included in waterfall plot. Doses ranged from 50 to 400 mg; see publication/reference for trial information.

KRY STAL-1/KRY STAL-7: Adagrasib (MRTX849) + pembrolizumab in NSCLC

Adagrasib + Pembrolizumab in Treatment-Naïve KRAS^{G12C}-mutated NSCLC: KRYSTAL-7 Best Tumor Change from Baseline

- Objective responses were observed in 49% (26/53)^a of patients across all PD-L1 levels, with a disease control rate of 89% (47/53)
- □ Responses were observed in 59% (13/22)^a of patients with PD-②→→→ □□→→→→ with PD-L1 TPS 1049%, and 30% (3/10)^a with PD-L1 TPS <1%</p>

Clinical activity evaluable population (n=53). One patient had only one post-baseline tumor assessment of PD due to newlesion; target lesions were not measured, therefore not included in the plot. Responses include target lesion tumor regression as well as not larget lesion assessment

| Plankides on grider and unconfirmed CRIPR

Data as of 30 August, 2022. Median follow-up 3.5 months

NEW TRIALS WITH KRAS INHIBITORS

 ${\sf KRYSTAL-1/KRYSTAL-7: Adagrasib\ (MRTX849) + pembrolizumab\ in\ NSCLC}$

Adagrasib + Pembrolizumab in Treatment-Naïve KRAS^{G12C}-mutated NSCLC: KRYSTAL-7 Tumor Response

	Concurrent 400 mg BID Adagrasib + Pembrolizumab (n=53) ^{a,b}
Objective response rate, n (%)	26 (49)
95% CI	35–63
Best overall response, n (%) Complete response Partial response	1 (2) 25 (47)
Stable disease Progressive disease	21 (40) 6 (11)
Disease control rate, n (%)	47 (89)
95% CI	77–96

ORR includes confirmed and unconfirmed CR/PR; 2 PRs were confirmed after data cut-off, and 3 responses remain unconfirmed, but patients remain on treatment

*Clinical activity evaluable population includes patients who received at least one dose of adagrasib (400 mg BID) + pembrolizumab and had measurable disease at baseline and at least one post-baseline tumor assessment. In the clinical evaluable population including patients who discontinued prior to first scar for reasons not related to treatment (n=61), ORR was 43% (28/61)
Data as of 30 August, 2022. Median followup 3.5 months. Median discharged in duration of treatment 2.9 months

Prevalence of EGFR Exon 20 Insertions

Frequency and Distribution of EGFR Mutations in NSCLC (N = 2,251)

EGFR exon 20 insertions include in-frame insertions and/or duplications of 3-21 base pairs between AA761-775.

S768I: missense mutation in exon 20 resulting in substitution of serine for isoleucine.

Coursing 5% 40, 5% 2081.

Prognosis of EGFR Exon 20 Insertions

	Median Real- World OS, mo	Adjusted HR (95% CI)	
Common EGFR	25.5	1.75	
EGFR exon 20 insertion	16.2	(1.5-2.1) P < .0001	

- Common EGFR (n = 2,833)
- EGFR exon 20 insertion (n = 181)

Approved and Emerging Targeted Therapy for NSCLC With *EGFR* Exon 20 Insertions

Amivantamab (Phase 1 CHRYSALIS) ¹	Previously Treated Patients (N = 81)
ORR	40%
Median DOR	11.1 mo
Median PFS	8.3 mo
Median OS	22.8 mo

Mobocertinib (Phase 1/2 Nonrandomised) ²	Previously Treated Patients (N = 114)
ORR	28%
Median DOR	17.5 mo
Median PFS	7.3 mo
Median OS	24.0 mo

Investigational agents are included; refer to local regulatory bodies for status. Note that these data are from multiple trials and cannot be directly compared. See publications/references for trial information.

Approved Targeted Therapy for NSCLC With *EGFR* Exon 20 Insertions

Comparison of Amivantamab vs Real-World Therapy for Patient With *EGFR*Exon 20 Insertion Who Progressed After Platinum Doublet Chemotherapy

Patient Case Scenario: Targeting *EGFR* Exon 20 Post Platinum-Based Chemotherapy

	Amivantamab (N = 81) ¹	Mobocertinib (N = 114) ²	Poziotinib (N = 115) ³	CLN-081 (N = 70) ⁴	Sunvozertinib (N = 119) ⁵	Necitumumab/ Osimertinib (N = 18) ⁶
Class	EGFR MET Bispecific Ab	EGFR TKI	Pan-HER TKI	EGFR TKI	EGFR TKI	EGFR TKIs
ORR, %	40	28	14.8	36.0ª	47.9	19.0°
Median DOR, mo	11.1	17.5	7.4	>15.0 ^b		-
Median PFS, mo	8.3	7.3	4.2	12.0 ^b	•	6.9
Median OS, mo	22.8	24.0	1	-	-	-

Investigational agents are included; refer to local regulatory bodies for status. Note that these data are from multiple trials and cannot be directly compared. See publications/references for trial information.

^a Partial response was the best response observed. ^b Among 13 patients receiving 100 mg BID with longer-term follow-up available. ^c ORR among all patients, not just those with *EGFR* exon 20 insertion.

Approved Targeted Therapy for NSCLC With *MET* Exon 14 Skipping Mutations

Tepotinib Phase 2 VISION¹

	Previously Treated (n = 56)	Treatment- Naïve (n = 43)
Median PFS, mo	10.9	8.5
DOR, mo	11.1	11.8

Combined ORR, 46%

Capmatinib Phase 2 GEOMETRY mono-12

	Previously Treated (n = 69)	Treatment- Naïve (n = 28)
Median PFS, mo	5.4	12.4
DOR, mo	9.7	12.6

ORR for pretreated patients, 41% ORR for treatment-naïve patients, 68%

DESTINY-Lung02 for *HER2*-Mutated NSCLC: Interim Response Outcomes Associated With T-DXd

	T-DXd 5.4 mg/kg (n = 52)	T-DXd 6.4 mg/kg (n = 28)
ORR, n (%)	28 (53.8)	12 (42.9)
CR, n (%)	1 (1.9)	1 (3.6)
PR, n (%)	27 (51.9)	11 (39.3)
SD, n (%)	19 (36.5)	14 (50.0)
DCR, n (%)	47 (90.4)	26 (92.9)

Introductión

Early signals of activity of PD-1/PDI1 inhibitors in NSCLC

Oct 2016 FDA expands **Pembrolizumab** indication for 1st line **NSCLC with TPS** >50% and approves in pretreated **NSCLC**

Aug 2018 FDA extends Pembrolizumab plus Platinum Pemetrexed in 1st line NSCLC Aug 2018 FDA approves Nivolumab in 3thrd line Nivolumab in NSCLC SCLC

Ipilimumab plus and Mesothelioma

Feb 2018 FDA approves **Durvalumab** in stage III

Oct 2018 Pembrolizumab in combination with chemotherapy FDA approves in 1st SqCC **NSCLC**

Cemiplimab for PD-L1 >50%

Ipilimumab plus Nivolumab plus CT in **NSCLC**

Nivolumab plus CT Neoadj stage II-IIIA **NSCLC**

2012

2015

2016

High solid tumors

2017

2019 2018

2021

2022

Mar 2015: FDA approved Nivolumab for pretreated SqCC **NSCLC**

Mar 2017 FDA grants Pembrolizumab for MSI

Dec 2018 FDA approves Atezolizumab plus CT plus bevacizumab in non Sa NSCLC

Jun 2019 FDA approved 3rd line SCLC

Durvalumab plus CT in advanced SCLC

Atezolizumab for adjuvant PD-L1 early stage NSCLC

Oct 2015 FDA extends Nivolumab for pretreated non SqCC NSCLC Oct 2015 FDA approves Pembrolizumab for pretreated NSCLC with TPS > 1%

Mar 2017 FDA approves Pembrolizumab plas CT for 1st line nonSq **NSCLC**

Mar 2019 FDA approves Atezolizumab plus CT in advanced SCLC

Impact of PD-L1 Expression on the Management of NSCLC Without Driver Mutations

See publications/references for further information. ^a Treatment regimens listed are not comprehensive. See the NCCN Guidelines for NSCLC for detailed recommendations, including treatment regimens. ^b CPI is recommended for eligible patients with PS 0-1. ^c Dual CPI therapy for patients with PD-L1 <1% is not FDA-approved.

Note that CPI monotherapy for PD-L1 1–49% and dual CPI therapy (regardless of PD-L1 status) are not EMA-approved. Treatment pathways by PD-L1 status continue to be refined based on outcomes from ongoing clinical trials.

What Challenges has ITP in advanced NSCLC

- ✓ ITP vs Ch-ITP for PD-L1 high expresión
- ✓ Treatment Options after Progresssion on First-Line ITP
- ✓ Role of ITP in advanced with driver-positive NSCLC
- ✓ How overcome the resistance to ITP
- ✓ Rechallenge
- ✓ Special Populations (elderly, poor ECOG, PS 2)
- ✓ Predicitive biomarkers, role of ctDNA
- ✓ Treatment duration
- ✓ Optimal approach to PD-L1 negative NSCLC

New therapeutic evidence on NSCLC

- ✓ Benefit of Osimertinib on early EGFR+, resectable NSCLC and the reduction in risk of CNS recurrence or death (ADAURA trial)
- ✓ The Issue of Adjuvant ITP on driver negative NSCLC resectable (IMPower 010 and Keanote-091/Pearls), and the relationship between ctDNA-defined subgroups and DFS
- ✓ New evidence of the role of neoadjuvant chemotherapy and immunotherapy in resectable NSCLC (NADIM and NADIM 2 trials)
- ✓ Consolidation of the results with CT+ RT → Durvalumab on unresectable stages IIIA, IIIB
 NSCLC (PACIFIC trial)
- ✓ Expectations and Realities of Conjugated Antibodies and Bispecific Antibodies

We start 2023 with this new treatment paradigm in aNSCLC

Novedades y Claves en Cáncer de Pulmón Programa Científico

- ✓ Introducción
 - ✓ J.L. González Larriba. H. Clínico San Carlos. Universidad Complutense. Madrid
- **✓** Biomarcadores pronósticos
 - ✓ A. Cantero. H. Regional Universitario de Málaga
- ✓ Estadios Iniciales y enfermedad localmente avanzada
 - ✓ M. Saigi. H. Germans Trias i Pujol. Badalona
- ✓ Enfermedad Metastásica
 - ✓ F.J. García Navalón. H. Son Llatzer. Palma de Mallorca.
- ✓ Cáncer de Pulmón Microcítico y otros tumores
 - ✓ A. López. H. Univesitario Severo Ochoa. Madrid
- **✓** Conclusiones
 - ✓ R. Palmero. H. Duran i Reynals. Hospitalet de Llobregat

