

HIGHLIGHTS ESMO 2025: CPNM ESTADIO LOCALIZADO

REYES BERNABÉ

HOSPITAL VIRGEN DEL ROCIO

CONFLICTOS DE INTERÉS

- Consultant or Advisory Role: Astra Zeneca, MSD, Pierre Fabre, BMS, Roche, Pfizer, Daichi, Pharmamar
- Research Funding: Roche

• Speaking: Astra Zeneca, Amgen, Roche, BMS,

Updated results from the phase III ALINA study of adjuvant alectinib vs chemotherapy in patients with early-stage ALK+ non-small cell llung cancer (NSCLC)

1. Designating 1. Schoolery 1. W. 1.5 And 1. Stock 1.

Updated results from the phase III ALINA study of adjuvant alectinib vs chemotherapy (chemo) in patients (pts) with early-stage ALK+ non-small cell lung cancer (NSCLC)

Rafal Dziadziuszko (Gdansk, Poland)

Ensartinib as adjuvant therapy in patients (pts) with stage IB-IIIB ALK-positive (ALK+) non-small cell lung cancer (NSCLC) after complete tumor resection: The phase III randomized ELEVATE trial

Dongsheng Yue (Tianjin, China)

CCTG BR.31: Adjuvant durvalumab (D) in resected non-small-cell lung cancer (NSCLC): Final overall surviva (OS) and minimal residual disease (MRD) analyses

Glenwood Goss (Ottawa, Canada)

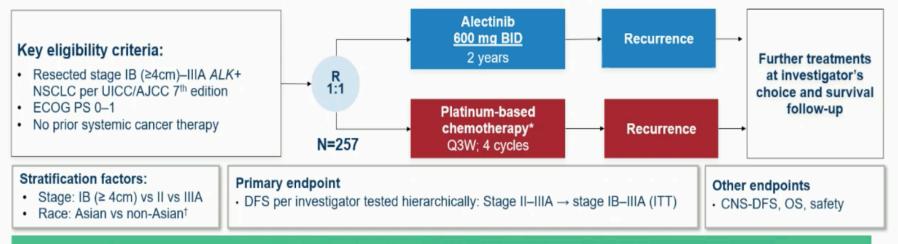
Early stage and locally advanced non-small cell lung cancer: Discussion

Alona Zer (Haifa, Israel)

Updated results from the phase III ALINA study of adjuvant alectinib vs chemotherapy in patients with early-stage *ALK*+ non-small cell lung cancer (NSCLC)

R. Dziadziuszko¹, B.J. Solomon², Y. Wu³, J.S. Ahn⁴, M. Nishio⁵, D.H. Lee⁶, J. Lee⁷, W. Zhong³, H. Horinouchi⁸, W. Mao⁹, M.J. Hochmair¹⁰, F. de Marinis¹¹, M.R. Migliorino¹², I. Bondarenko¹³, T. Xu¹⁴, A. Cardona¹⁵, A. Scalori¹⁶, V. McNally¹⁶, A.A. Higgerson¹⁷, F. Barlesi¹⁸

¹Department of Oncology & Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdańsk, Gdańsk, Poland ²Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; ³Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; ⁴Department of Haematology & Oncology, Samsung Medical Centre, Seoul, Korea; ⁵Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; ⁵Department of Oncology, Asan Medical Centre, Seoul, Korea; ⁷Division of Haematology and Medical Oncology, Seoul National University Bundang Hospital, Seongnam, Korea; ⁸Department of Thoracic Oncology, National Cancer Centre Hospital, Tokyo, Japan; ⁹Department of Thoracic Surgery, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Zhejiang, China; ¹⁰Department of Respiratory & Critical Care Medicine, Klinik Floridsdorf, Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Vienna, Austria; ¹¹Department of Thoracic Oncology, European Institute of Oncology (IRCSS), Milan, Italy; ¹²Department of Oncology, San Camillo Forlanini Hospital, Rome, Italy; ¹³Oncology And Medical Radiology Department, Dnipropetrovsk Medical Academy, Dnipro, Ukraine; ¹⁴Department of Clinical Science, Roche (China) Holding Ltd, Shanghai, China; ¹⁵Data and Statistical Sciences, F. Hoffmann-La Roche Ltd, Basel, Switzerland; ¹⁶PD Oncology, Roche Products Ltd, Welwyn Garden City, United Kingdom; ¹⁷PD Safety, F. Hoffmann-La Roche Ltd, Basel, Switzerland; ¹⁶Department of Medical Oncology, International Centre for Thoracic Cancers (CICT), Villejuif, France



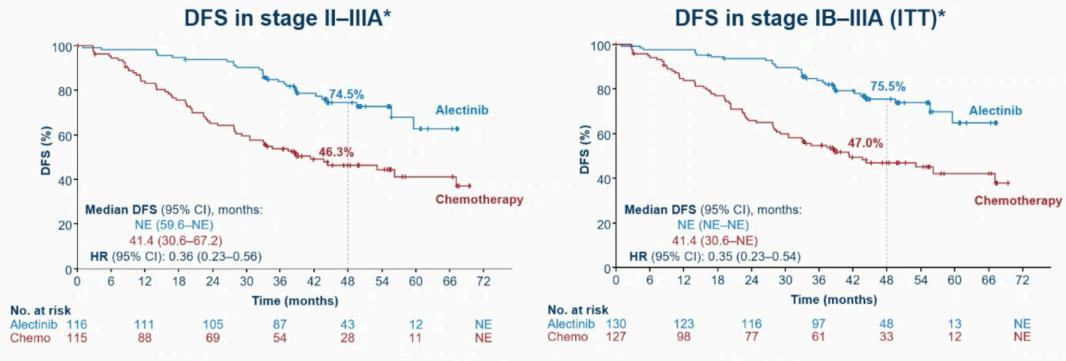
EUROPEAN SOCIETY FOR MEDICAL ONCOLOGY

ALINA: background and study design

- Alectinib, an ALK inhibitor, is an approved standard-of-care for patients with resected or advanced ALK+ NSCLC¹⁻³
 - o Alectinib has demonstrated efficacy and delayed disease progression in the CNS¹⁻³
 - o Long-term data show alectinib is tolerable and has a manageable safety profile 1-3
- ALINA is the only positive phase III trial of an ALK inhibitor in resectable, stage IB—IIIA (UICC/AJCC 7th edition), ALK+ NSCLC²⁻⁴
 - The primary analysis showed a **significant DFS benefit** with alectinib vs chemotherapy (**HR: 0.24**; 95% CI 0.13–0.43; p<0.0001)^{2,3}

Here, we present updated data from the ALINA study with a median follow-up of 4 years All patients in the alectinib arm had completed 2 years of treatment with ≥1 year of follow-up

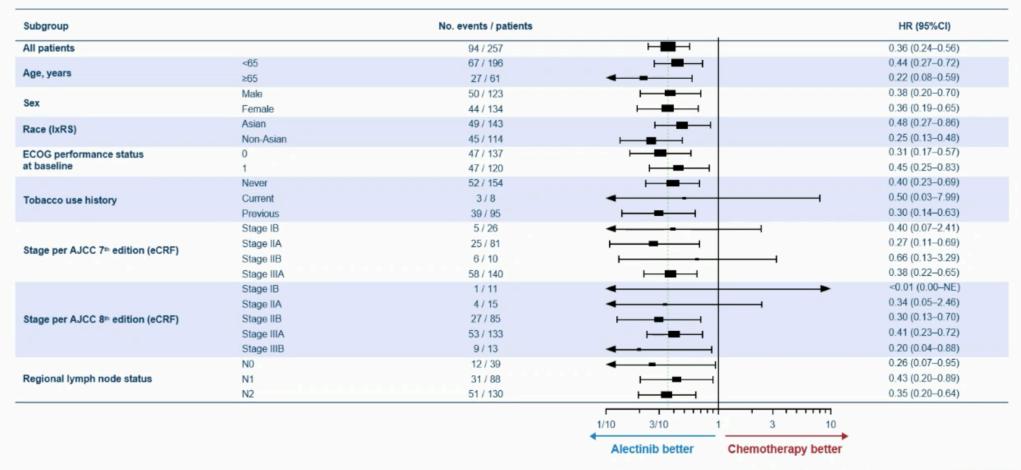
NCT03456076. Crossover was not permitted prior to disease recurrence. "Cisplatin + pemetrexed, cisplatin + gemcitabline; cisplatin could be switched to carboplatin in case of intolerability. [†]Stratification by patient race recorded in the interactive voice/web response system. 1. Alecensa Prescribing Information Genentech Inc. 2024; 2. Solomon et al. ESMO 2023 (LBA2); 3. Wu et al. N Engl J Med 2024; 4. Ahn et al. ESMO Asia 2023 (LBA1). ALK, anaplastic lymphoma kinase; AJCC, American Joint Committee on Cancer; BID, twice daily; CI, confidence interval; CNS, central nervous system; DFS, disease-free survival; ECOG PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; ITT, intention to treatt OS, overall survival; Q3W, every 3 weeks: R, randomisation: UICC, Union for International Cancer Control



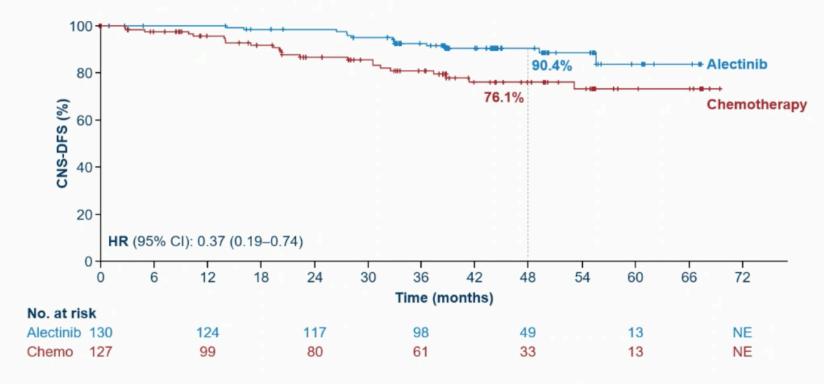
Patient demographics and baseline characteristics (ITT)

Characteristic ^{1,2}	Alectinib (n=130)	Chemotherapy (n=127)
Median age <65 / ≥65 years, %	54 years 79 / 21	57 years 73 / 27
Sex: female / male, %	58 / 42	46 / 54
Smoking status: never / former / current, %	65 / 32 / 4	55 / 43 / 2
Race: Asian / non-Asian, %	55 / 45	56 / 44
ECOG PS: 0 / 1, %	55 / 45	51 / 49
Stage at diagnosis per AJCC 7th edition: IB / II / IIIA, %	11 / 36 / 53	9 / 35 / 55
Stage at diagnosis per AJCC 8th edition: IB* / IIA / IIB / IIIA / IIIB, $\%$	5/8/31/51/5	4 / 3 / 35 / 54 / 5
Nodal status: N0 / N1 / N2, %	16 / 35 / 49	14 / 34 / 52
Histology: squamous / non-squamous, %	5 / 95	2 / 98
Surgical procedure: Lobectomy / other [†] , %	97 / 3	92 / 8

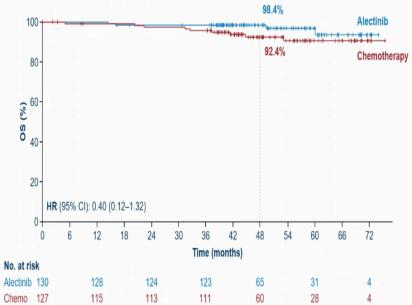
Disease-free survival


Median follow-up (ITT): alectinib, 48.0 months; chemotherapy, 47.4 months

DFS benefit was sustained with alectinib versus chemotherapy in the stage II–IIIA and stage IB-IIIA (ITT) populations


Disease-free survival subgroup analysis (ITT)

CNS disease-free survival (ITT)


Median follow-up (ITT): alectinib, 48.0 months; chemotherapy, 47.4 months

A clinically meaningful CNS-DFS benefit was maintained in the IB-IIIA* (ITT) population

Median follow-up (ITT): alectinib, 48.0 months; chemotherapy, 47.4 months

In the IB–IIIA* (ITT) population, there was a positive trend in OS with 4 years of median follow-up

Prof. Rafal Dziadziluszko

Data out-off: 8 December 2024 "Per UICO/AJCC 7th edition

Post-recurrence subsequent therapy

Number of patients with disease recurrence, $n\left(\%\right)$	Alectinib (n=31)	Chemotherapy (n=60)
Number of patients with any subsequent therapy	24 (77.4)	55 (91.7)
Systemic therapy	24 (77.4)	51 (85.0)
ALK TKI	19 (61.3)	49 (81.7)
Alectinib	8 (25.8)	35 (58.3)
Brigatinib	7 (22.6)	8 (13.3)
Lorlatinib	7 (22.6)	6 (10.0)
Crizotinib	1 (3.2)	4 (6.7)
Ceritinib	1 (3.2)	2 (3.3)
Chemotherapy	9 (29.0)	3 (5.0)
Immunotherapy	1 (3.2)	1 (1.7)
Other anti-cancer therapy	2 (6.5)	2 (3.3)
Radiotherapy	8 (25.8)	10 (16.7)
Surgery	2 (6.5)	3 (5.0)

After recurrence, most patients received treatment with an ALK-TKI, of which alectinib was most widely used

Prof. Rafal Dziadziuszko

Ensartinib as adjuvant therapy in patients with stage IB–IIIB ALK-positive (ALK+) non-small cell lung cancer (NSCLC) after complete tumor resection: the phase III randomized ELEVATE trial

Dongsheng Yue¹, Meijuan Huang², Pingping Song³, Yuejun Chen⁴, Bin Li⁴⁵, Junke Fu⁶, Jianji Guo⁷, Chao Cheng⁸, Qixun Chen⁹, Shidong Xu¹⁰, Hongxu Liu¹¹, Fang Lv¹², Jian Hu¹³, Ke Jiang¹⁴, Weimin Mao¹⁵, Feng Ye¹⁶, Bo Shen¹⁷, Lieming Ding¹⁸,

You Lu2, Changli Wang

Trainin Medical University Institute & Hospital, Trainin, China, "West China Hospital, Schuan University, Chengdo, China, "Bhandong Cancer Hospital and Institute, Jinan, China; "Human Cancer Hospital, Changaha, China; "The Second Hospital & Clinical Medical & Bohool, Larushou University, Lambou, China; "The Second Hospital & Clinical Medical & Bohool, Larushou University, China; "The Seria Militated Hospital of Xian Jiactong University, Xian, China; "The First Affiliated Hospital Hospital of Xian Jiactong University, Cancer Hospital, Hampin, China; "Tabeliang Cancer Hospital, Hampin, China; "Mactional Cancer CenterMilitation Cancer Hospital & Institute, Dallam, China; "Mattonia Cancer CenterMilitation Clinical Research Control Contr

Study design

· Confirmed positive ALK

Randomized, double-blind phase III trial (data cutoff for interim analysis: 6/26/2025)

Key Inclusion Criteria: Preplanned treatment duration: 2 years 225 mg once daily Age ≥18 years · Completely resected (R0), Stratification by Treatment until: histologically confirmed Disease recurrence Histological Treatment completed stage IB, II, IIIA or IIIB stage (IB vs. II vs. Randomization (1:1) Met the discontinuation criteria (T3N2M0) NSCLC per the N=270 Prior adjuvant 8th edition of AJCC/UICC Adjuvant chemotherapy Baseline and every 12 weeks for the first (ves vs. no) permitted 2 years, and then every 24 weeks ECOG PS 0-1 annually until the occurrence of disease

Primary endpoint: Investigator-assessed DFS* in patients with stage II to IIIB disease

Secondary endpoints: Investigator-assessed DFS in patients with stage IB-IIIB disease (ITT), 3/5-year DFS rate, OS, safety Statistical analysis:

· This preplanned interim analysis was performed when 70% of events (57 events) were observed in patients with stage II-IIIB disease.

Ensartinib

Placebo

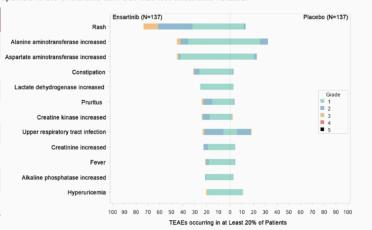
once daily

*Defined as the time from randomization to disease recurrence or death from any cause.

AJCC: American Joint Committee on Cancer; DFS, disease–free survival; ECOG PS: Eastern Cooperative Oncology Group performance-status; ITT: Intention-to-Treat Population; UICC: Union for International Cancer Control

Dr. Dongsheng Yue

Baseline characteristics (ITT)

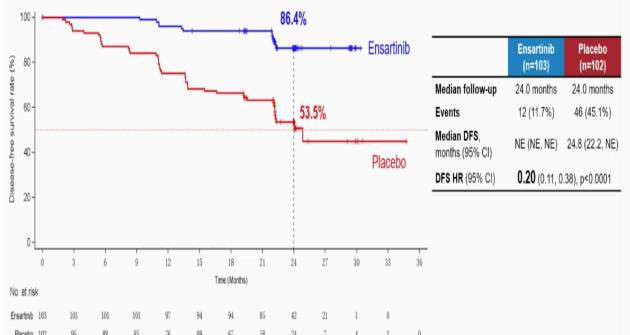

Characteristics	Ensartinib (n=137)	Placebo (n=137)
Median age <65/≥65 years, %	55 years 84.7/15.3	54 years 86.9/13.1
Sex: female/male, %	66.4/33.6	61.3/38.7
ECOG PS: 0/1, %	54.7/45.3	62.8/37.2
Smoking status: never/former/current,%	83.9/15.3/0.7	79.6/19.7/0.7
Stage*: B/ / ^{&} , %	24.8/34.3/40.9	25.5/33.6/40.9
Prior chemotherapy: yes/no, %	68.6/31.4	70.8/29.2

^{*}The histological stage was classified according to the 8th edition of the Cancer Staging Manual of the AJCC/UICC.

Safety summary

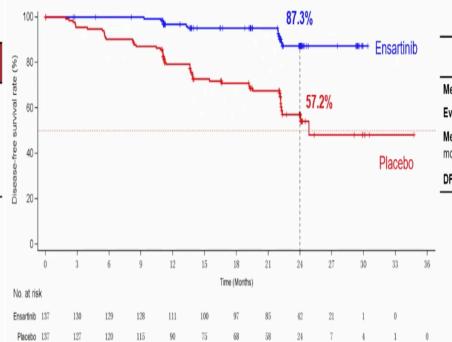
- At least one treatment-emergent adverse event (TEAE) was reported by 98.5% in the ensartinib arm and 92.0% in the placebo arm.
- The majority were grade 1 or 2 events.
- One grade 5 (fatal) TEAE (cerebral hemorrhage) was reported in the ensartinib arm but was not ensartinib-related.

	Ensartinib (n=137)	Placebo (n=137)
Median duration of treatment	22.1 months	17.1 months
Any TEAEs, %	135 (98.5)	126 (92.0)
Grade 3-4	48 (35.0)	23 (16.8)
Grade 5	1 (0.7)	2 (1.5)
SAEs, %	25 (18.2)	14 (10.2)
TEAE leading to dose reduction, n (%)	41 (29.9)	2 (1.5)
TEAE leading to dose interruption, n (%)	48 (35.0)	20 (14.6)
TEAE leading to dose discontinuation, n (%)	3 (2.2)	2 (1.5)



Dr. Dongsheng Yue

[&]amp;The stage III included IIIA and IIIB.


Ensartinib showed an improved DFS in patients with II-IIIB disease

Investigator-assessed DFS

Ensartinib showed an improved DFS in patients with IB-IIIB disease

Investigator-assessed DFS

	Ensartinib (n=137)	Placebo (n=137)	
Median follow-up	22.2 months	22.1 months	
Events	12 (8.8%)	48 (35.0%)	
 Median DFS, months (95% CI)	NE (NE, NE)	24.8 (22.2, NE)	
DFS HR (95% CI)	0.20 (0.10, 0	.37), p<0.0001	

Conclusions

- Adjuvant ensartinib showed significant and clinically meaningful DFS benefits in patients with stage IB-IIIB ALK-positive NSCLC as compared with placebo.
 - Primary population (II-IIIB): DFS HR: 0.20; 95% CI: 0.11-0.38; p<0.0001
 - ITT population (IB-IIIB): DFS HR: 0.20; 95% CI: 0.10-0.37; p<0.0001
 - DFS prolonged with ensartinib across subgroups, including those with histological stage (IB/II/IIIA-IIIB) disease, and who received prior adjuvant chemotherapy
- · No new safety signal of ensartinib was noted in the adjuvant setting

Dr. Dongsheng Yue

Glenwood Goss MD, FCP(SA), FRCPC

BR.31: Trial Design

"Baseline" (randomisation)1

& WES of germline blood

Study population

- Stage IB (≥4 cm)–IIIA NSCLC (AJCC 7th ed.)
- Complete resection
- ECOG PS 0-1
- EGFRm/ALK+ pts eligible

Durvalumab

20 mg/kg Q4W x 12 months

Stratification

- Stage IB (≥4 cm) vs II vs IIIA
- PD-L1 status (0 vs 1–24% vs 25–49% vs ≥50%)³
- Adjuvant platinum-based CT (≥300 mg/m² cisplatin/equiv vs <300 mg/m² vs no CT)
- · Accruing centre
- Nodal dissection according to ESTS4 (yes vs no)

Placebo

20 mg/kg Q4W x 12 months

Primary endpoint

DFS⁵ (investigator assessed) in patients with PD-L1 TC ≥25% and EGFR-/ALK-

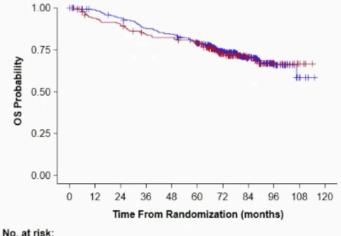
to identify variants for

ctDNA analysis

Key secondary endpoints

- DFS in patients with:
 - PD-L1 TC ≥1% and EGFR-/ALK-
 - PD-L1 all comers and EGFR-/ALK-
- OS in the three subpopulations mentioned above, in the same hierarchical order
- · AEs and QoL

Today, we present the overall survival (OS) results, in the same hierarchical order, as well as the preliminary results of minimal residual disease (MRD) analyses.

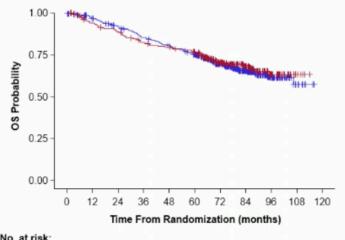

BR.31: Final OS by Subpopulation

CP lung cancer research

- Adjuvant durvalumab did not improve OS in the primary population of PD-L1 TC ≥25% EGFR-/ALK- patients, or in key secondary subpopulations of PD-L1 TC ≥1% EGFR-/ALK- or PD-L1 all comers EGFR-/ALK- patients.
- Updated DFS results did not change substantively since previous presentation of data.

PD-L1 ≥ 25% and *EGFR-/ALK-*

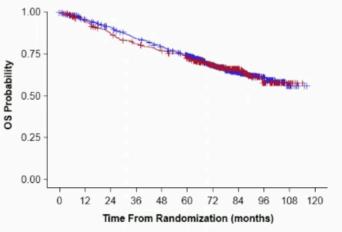
	D arm n=316	PBO arm n=161
No. of events (%)	88 (27.8)	45 (28.0)
Median OS (95% CI), months	NR (106.8-NR)	NR (NR-NR)
Stratified HR (95% CI)	0.98 (0.69-1.42)	
P-value (2-sided)	0.93	



D arm 316 301 286 266 256 237 172 100 40 6 0 PBO arm 161 147 140 129 126 121 84 44 20 4 0

Canadian Cancer Groupe canadien Trials Group des essais sur le cancer

PD-L1 ≥ 1% and *EGFR-/ALK*-


	D arm n=469	PBO arm n=240	
No. of events (%)	149 (31.8)	72 (30.0)	
Median OS (95% CI), months	NR (106.8-NR)	NR (NR-NR)	
Stratified HR (95% CI)	1.10 (0.83-1.47)		
P-value (2-sided)	0.52		

	mile i rom rumadimzution (montais)											
No. at risk:												
D arm	469	439	409	378	356	326	236	133	58	10	0	
PBO arm	240	219	205	188	181	173	123	66	30	5	0	

PD-L1 All Comers and EGFR-/ALK-

	D arm n=815	PBO arm n=404	
No. of events (%)	266 (32.6)	135 (33.4)	
Median OS (95% CI), months	NR (106.8-NR)	NR (NR-NR)	
Stratified HR (95% CI)	1.00 (0.81-1.23)		
P-value (2-sided)	0.96		

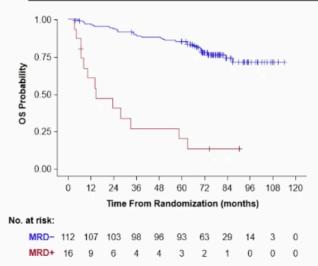
BR.31: Baseline Characteristics of MRD+ vs MRD- Groups

P

- Of the 1415 (100%) randomised patients, 1131 (80%) were successfully tested for MRD (MRD-evaluable).
- There was no difference in the effects of durvalumab on OS, comparing MRD-evaluable versus MRD non-evaluable patients (interaction p=0.75; data not shown).
- Approximately 10% (116/1131) of MRD-evaluable patients had a positive test result (MRD+).
- A higher proportion of patients with Stage IIIA disease and ECOG PS 1 were in the MRD+ vs MRD- group.

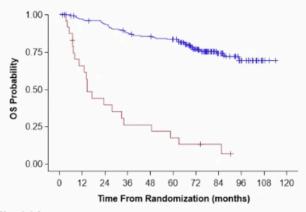
	Baseline Demographics (All <i>EGFR-IALK</i> - Pa	tients)
		MRD+	MRD-
		N=116	N=1015
Median age, yr		64.5	64
Age p (%)	<65 yr	58 (50.0)	520 (51.2)
Age, n (%)	≥65 yr	58 (50.0)	495 (48.8)
Sav n (%)	Male	73 (62.9)	641 (63.2)
Sex, n (%)	Female	43 (37.1)	374 (36.8)
	White	52 (44.8)	456 (44.9)
	Black	0 (0.0)	5 (0.5)
Daga n (0/)	Asian	35 (30.2)	289 (28.5)
Race, n (%)	American Indian/Alaska native	0 (0.0)	1 (0.1)
	Unknown	2 (1.7)	7 (0.7)
	Missing (Not reported)	27 (23.3)	257 (25.3)
Smoking	No	25 (21.6)	163 (16.1)
History, n (%)	Yes	91 (78.4)	852 (83.9)

Baseline Disease Characteristics (All <i>EGFR-/ALK-</i> Patients)						
		MRD+	MRD-			
		N=116	N=1015			
ECOG PS, n (%)	0	57 (49.1)	658 (64.8)			
ECOG P3, II (%)	1	59 (50.9)	357 (35.2)			
Histology, n (%)	Squamous	38 (32.8)	281 (27.7)			
nistology, ii (%)	Non-squamous	78 (67.2)	734 (72.3)			
	1 – <25%	41 (35.3)	308 (30.3)			
PD-L1, n (%)	25 - <50%	11 (9.5)	129 (12.7)			
PD-L1, II (70)	<1%	35 (30.2)	323 (31.8)			
	≥50%	29 (25.0)	255 (25.1)			
Stage, n (%)	IB (≥ 4 cm)	7 (6.0)	109 (10.7)			
Stage, II (70)	II	56 (48.3)	581 (57.2)			
	IIIA	53 (45.7)	325 (32.0)			
EGFR ALK	EGFR+/ALK+	19 (16.4)	128 (12.6)			
mut, n (%)	EGFR-/ALK-	97 (83.6)	887 (87.4)			



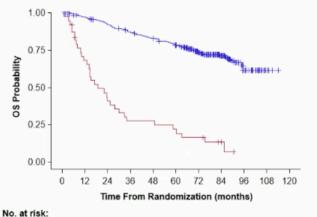
BR.31: Prognostic Effect of MRD on OS by Subpopulation

A positive MRD test is highly prognostic for poor patient survival


Placebo arm: PD-L1 ≥ 25% and *EGFR*-/*ALK*-

	MRD+ n=16	MRD- n=112	
No. of events (%)	13 (81.3)	26 (23.2)	
Median OS (95% CI), months	14.9 (7.0-58.8)	NR (0-NR)	
Unstratified HR (95% CI)	8.74 (4.40	0–17.35)	
P-value (2-sided)	<0.0001		

Placebo arm: PD-L1 ≥ 1% and *EGFR*-/*ALK*-

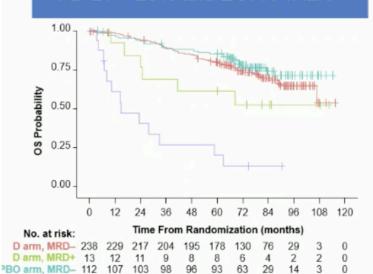

	MRD+ n=24	MRD- n=171		
No. of events (%)	21 (87.5)	41 (24.0)		
Median OS (95% CI), months	14.9 (8.3-33.1)	NR (0-NR)		
Unstratified HR (95% CI)	9.14 (5.31-15.74)			
P-value (2-sided)	<0.0	001		

o. at risk:											
MRD-	171	161	154	144	139	135	95	47	22	3	0
MRD+	24	15	9	6	6	4	3	2	0	0	0

Placebo arm: PD-L1 All Comers and *EGFR-/ALK-*

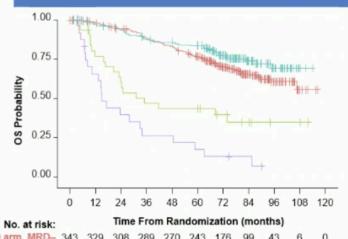
	MRD+ n=39	MRD- n=282	
No. of events (%)	33 (84.6)	81 (28.7)	
Median OS (95% CI), months	19.2 (13.3-30.1)	NR (0-NR)	
Unstratified HR (95% CI)	7.33 (4.84-11.12)		
P-value (2-sided)	<0.00	001	

MRD- 282 269 251 237 224 210 155 82 34 5



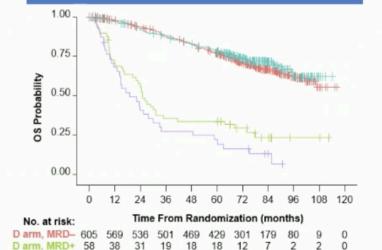
BR.31: Predictive Effect of MRD on OS by Subpopulation

P


A positive MRD test is predictive for OS benefit of durvalumab in PD-L1 ≥ 25% and PD-L1 ≥ 1% subpopulations

PD-L1 ≥ 25% and *EGFR-/ALK-*

MRD+	D arm n=13	PBO arm n=16		
Median OS (95% CI), months	NR (24.0-NR)	14.9 (7.0-58.8)		
Unstratified HR (95% CI)	0.30 (0.11-0.80)			
P-value (2-sided)	0.011			
MRD-	D arm n=238	PBO arm n=112		
Median OS (95% CI), months	NR (106.8-NR)	NR (0-NR)		
Unstratified HR (95% CI)	1.28 (0.82-2.01)			
P-value (2-sided)	0.28			
Interaction P-value	0.006			


PD-L1 ≥ 1% and EGFR-/ALK-

No. at risk:			Time	Fron	n Ran	domi	zation	(mo	nths)		
D arm, MRD-	343	329	308	289	270	243	176	99	43	6	0
D arm, MRD+	31	23	19	14	13	13	9	6	2	2	0
PBO arm, MRD-	171	161	154	144	139	135	95	47	22	3	0
PBO arm, MRD+	24	15	9	6	6	4	3	2	0	0	0

MRD+	D arm n=31	PBO arm n=24		
Median OS (95% CI), months	35.1 (20.6-NR)	14.9 (8.3-33.1)		
Unstratified HR (95% CI)	0.49 (0.26–0.92) 0.024			
P-value (2-sided)				
MRD-	D arm n=343	PBO arm n=171		
Median OS (95% CI), months	NR (106.8-NR)	NR (0-NR)		
Unstratified HR (95% CI)	1.38 (0.97-1.97)			
P-value (2-sided)	0.080			
Interaction P-value	0.0	03		

PD-L1 All Comers and EGFR-/ALK-

PBO arm, MRD- 282 269 251 237 224 210

MRD+

PBO arm, MRD+ 39 25 15 10 10

	11 00	11 00		
Median OS (95% CI), months	25.1(16.6-31.5)	19.5(13.3-30.1)		
Unstratified HR (95% CI)	0.71 (0.45–1.12) 0.14			
P-value (2-sided)				
MRD-	D arm n=605	PBO arm n=282		
Median OS (95% CI), months	NR (106.8-NR)	NR (0-NR)		
Unstratified HR (95% CI)	1.12 (0.86–1.45) 0.39			
P-value (2-sided)				
Interaction P-value	0.0	44		

155

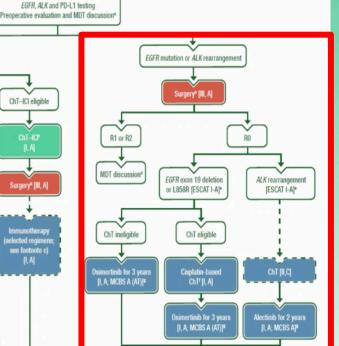
PBO arm, MRD+ 16 9 6 4 4 3

Glenwood D. Goss

PBO arm

BR.31: Conclusions

- Adjuvant durvalumab in early-stage NSCLC did not improve OS and DFS outcomes in the primary population of PD-L1 ≥25% *EGFR*-/*ALK* patients, or in the secondary populations of PD-L1 ≥1% *EGFR*-/*ALK* or PD-L1 all comers *EGFR*-/*ALK* patients.
- MRD analysis was successful in 80% of randomized patients and there was no difference in the effects of durvalumab on OS comparing MRD-evaluable with MRD non-evaluable patients (interaction p=0.75).
- A positive MRD test observed in 10% of MRD-evaluable patients, was highly prognostic for poor OS, irrespective of tumour PD-L1 expression status.
- In an exploratory MRD analysis, durvalumab significantly improved OS of patients with a positive MRD test in both the PD-L1 ≥25% *EGFR*-/*ALK* (p=0.011) and PD-L1 ≥1% *EGFR*-/*ALK* (p=0.024) subpopulations.
- The effects of durvalumab on OS were consistently superior for patients with a positive MRD test vs those with a negative MRD test across all PD-L1 subpopulations (all interaction p-values <0.05).
- In the context of emerging data, the BR.31 exploratory MRD analyses support the hypothesis that primary disease and associated tumour antigens is required for optimal efficacy of checkpoint inhibition in early-stage NSCLC.



ESMO CPG 2025

- Algorithm title
- Surgery
- Systemic anticancer therapy
- Combination of treatments or treatment modalities
- Other aspects of management
- COptional branches, colour used as described in the categories above

"SBRT is recommended for patients with severe chronic obstructive pulmonary disease and elderly and/or frail patients [III, A] and can be recommended for subsets of patients with interstitial pulmonary fibrosis after multidisciplinary consultation and shared decision making with the patient [III, B]. For patients with N2 disease, resectability and selection for neoadjuvant or perioperative systemic therapy versus concurrent definitive CRT should be discussed for each individual patient by an experienced MDT [V, A], *Anatomial resection is preferred over wedge resection [I, A], three mediastinal and three hilar lymph node stations should be dissected [III, A], VATS or RATS is recommended for stage II tumours [I. A]: minimally invasive approaches may be considered for resectable stage III tumours according to the surgeon's expenence [V, C]: "Options: necadjuvant nivolumab—ChT [I, A ESMO-MCBS v2.0 score: A (AT); FDA approved, EMA approved for PD-L1 TC ≥1%]; neoadjuvant pembrolizumab-ChT followed by adjuvant pembrolizumab [I, A; ESMO-MCBS v2.0 score: A (AT)]; neoadjuvant durvalumab-ChT followed by adjuvant durvalumab [I. A: ESMO-MCBS v2.0 score: A (AT)]; neoadjuvant nivolumab--ChT followed by adjuvant nivolumab [I, A; ESMO-MCBS v2.0 score: A (AT); FDA approved, EMA approved for PD-L1 TC ≥1%]. Neoadjuvant tisletizumab-ChT followed by adjuvant tislelizumab [I, A; ESMO-MCBS v2.0 score: A (AT); EMA CHMP positive opinion, not FDA approved]: 4In R1 and R2 resections, an MDT discussion is indicated for consideration of re-resection or incorporation of adjuvant ChT, PORT or definitive CRT, ESCAT scores apply to alterations from genomic-driven analyses only. These scores have been defined by the authors, assisted if needed by the ESMO Translational Research and Precision Medicine Working Group; Carboplatin-based regimens can be recommended for patients who are not eligible for cisplatin (e.g. renal, neurological or other contraindication) [II, B], PESMO-MCBS v2.0 was used to calculate scores for therapies/indications approved by the EMA or FDA. The scores have been calculated and validated by the ESMO-MCBS Working Group and reviewed by the authors (https://www.esmo.org/guidelines/esmomcbs/esmo-mcbs-evaluation-forms); hFDA approved for tumours with PD-L1 TC ≥1%; EMA approved for tumours with PD-L1 TC ≥50%; EMA and FDA approved after platinum-based ChT. ChT, chemotherapy; CPG, Clinical Practice Guideline; CRT, chemoradiotherapy, ICI, immune checkpoint inhibitor, MDT, multidisciplinary team; N, node; PD-L1, programmed death-ligand 1; PORT, post-operative radiotherapy; R0, no tumour at the margin; R1, microscopic tumour at the margin; R2, macroscopic tumour at the margin; RATS, robotic-assisted thoracoscopic surgery; SBRT, stereotactic body radiotherapy, TC, tumour cell, VATS, video-assisted thoracoscopic surgery. Zer A, et al. Ann Oncol 2025; online ahead of print.

© 2025 European Society for Medical Oncology. Published by Elsevier Ltd. All rights reserved.

Surveillance [1, A]

Alona Zer

Early stage and locally advanced non-small cell lung cancer: Discussion

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Resectable stage II-III NSCLC

EGFR WT and ALK WT

ChT ineligible

PD-L1 negative

embrolizumab¹ for 1 year [I, A; MCBS A (AT)]⁰

Surveillance [I, A]

ChT-ICI ineligible

ChT eligible

R1 or R2

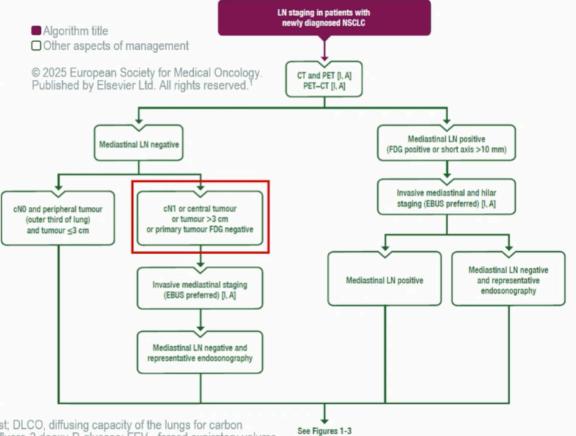
MDT discussion

PD-L1 positive

Atezolizumab^a for 1 year [I, A; MCBS A (AT)]^a

Pembrolizumabi for 1 year

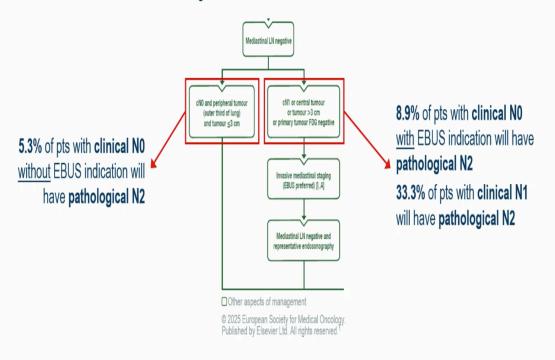
[I, A; MCBS A (AT)]



Early and locally advanced NSCLC: ESMO CPG

Diagnosis and staging

	Mandatory	Optional
General 🗸	Medical history Physical examination Assess comorbidities, weight loss and PS	·
Imaging 🗸	FDG–PET and contrast-enhanced CT Brain MRI (for clinical stage II-III)	Contrast-enhanced brain CT if MRI not possible
Laboratory	CBC Chemistry profile	
Preoperative cardiopulmonary evaluation	FEV₁ DLCO CPET	
Tissue acquisition	Bronchoscopy EBUS or EUS CT-guided biopsy US-guided biopsy	Mediastinoscopy
Pathology	TTF-1 IHC staining p40 IHC staining EGFR molecular testing ALK molecular testing PD-L1 testing	


c, clinical; CBC, complete blood count; CPET, preoperative cardiopulmonary exercise test; DLCO, diffusing capacity of the lungs for carbon monoxide; EBUS, endobronchial ultrasound; EUS, endoscopic ultrasound; FDG, [18F]2-fluoro-2-deoxy-D-glucose; FEV₁, forced expiratory volume in 1 second; PD-L1, programmed death-ligand 1; PS, performance status; TTF-1, thyroid transcription factor-1; US, ultrasound.

1. Zer A, et al. Ann Oncol 2025; online ahead of print.

Why do we need EBUS if PET is negative?

"Clean" mediastinum according to PET

EBUS, endobronchial ultrasound; FDG, [18F]2-fluoro-2-deoxy-D-glucose. Ahn Y, et al. AJR 2025;224;10.2214/AJR.24.32486.

Alona Zer

EBUS vs mediastinoscopy

MEDIASTrial¹

No need for confirmatory mediastinoscopy after systematic endosonography

- 178 pts post-EBUS randomised to immediate resection vs mediastinoscopy before resection
- Non-inferiority margin 8%
- Unforeseen N2 in both groups ~8% (no effect on OS)
- · Suggesting mediastinoscopy can be omitted in negative EBUS

Yasufuku K, et al.²

- Prospective study
- 190 pts undergoing EBUS and mediastinoscopy during same anaesthetic
- Nearly identical sensitivity, NPV and diagnostic accuracy

	EBUS	Mediastinoscopy
Sensitivity	81%	79%
NPV	91%	90%
Diagnostic	93%	93%
accuracy		1111

Muchas Gracias

mariar.bernabe.sspa@juntadeandalucia.es

