
Inmunoterapia

Dr. Bartomeu Massutí

Iniciativa científica de:

Spanish Lung Cancer Group

- Induce Ag-specific T cells (not present before): Vaccine, Release Ag with RT/targeted agent/chemoRx
- Provide more Ag-presenting cells
- Activation/Modulation of APC :Anti-CD40 +TLR, anti-VEGF?
- Drive T-cell expansion to expand pool of Ag-specific T cells :Cytokines, vaccines, co-stimulation (CD27, CD137, OX40, GITR, ICOS)
- Change a suppressive systemic (deviated) cytokine/other environment :Th1 cytokines, Anti-YKL-40, Reduce MICA/MICB,
- Remove other regulatory checkpoints/suppressive factors for T-cell activation/expansion in periphery (LN): CTLA-4,?
- Drive T-cells into microenvironment: CTLA-4, GITR, anti-VEGF, pro-inflammatory agents, targeted agents
- Expand/activate/change ratio of T-cells in microenvironment :Cytokines, vaccines, co-stimulation (CD27, CD137, OX40, GITR, ICOS)
- <u>Remove other checkpoints/ T-cell suppression in microenvironment</u>: Treg (CTLA-4), cytokines and anti-cytokines, Ido, arginase, multiple checkpoints (PD-1 pathway, other B7-H, KIR, HLA-G, CD200, TIm3, LAG3)
- Restore tumor Ag presentation
- Transfer Engineered T Cells-CAR-T

Iniciativa científica de:

Problem
→ Identifying the critical deficiency(ies) in individual patients

IMPower132: Atezolizumab+Platin+Pemetrexed

100

90

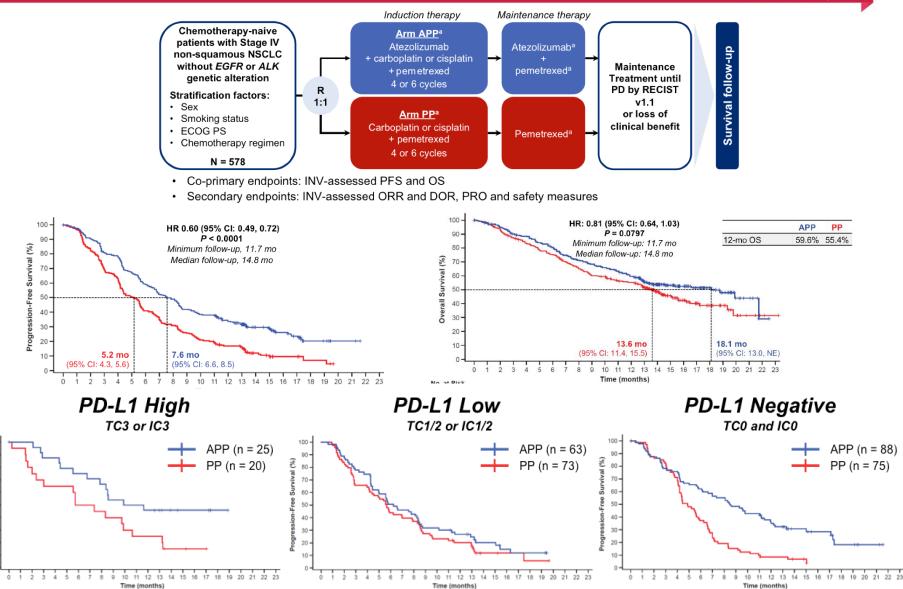
80 -

70-

60 -

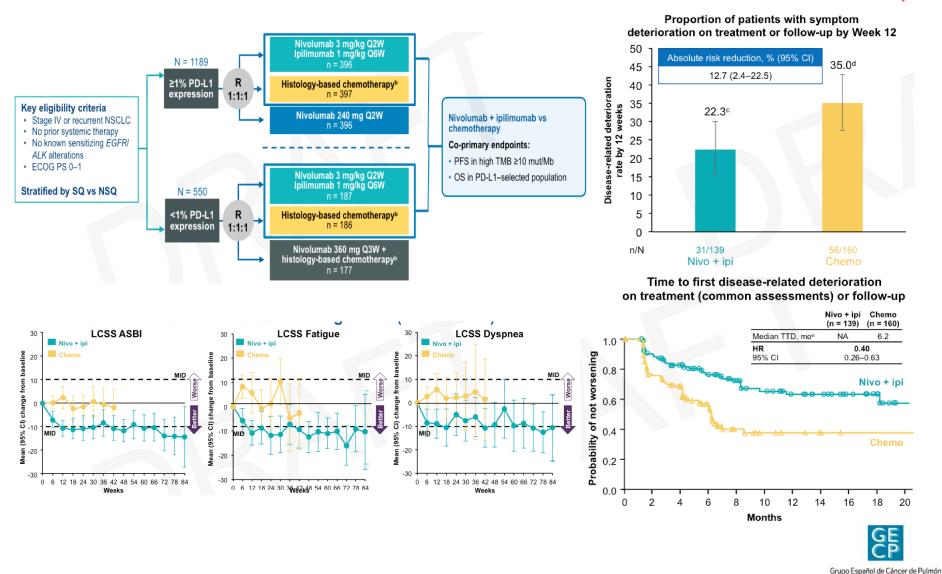
50 -

40 -

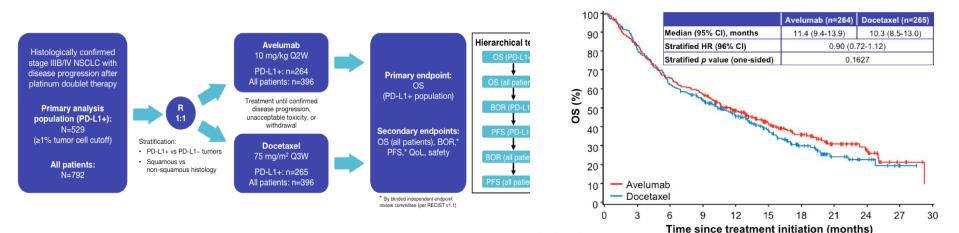

30

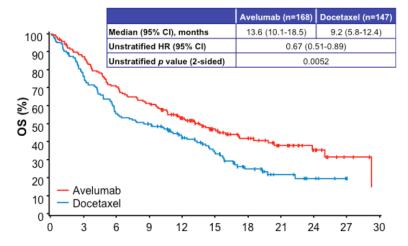
20

10 -

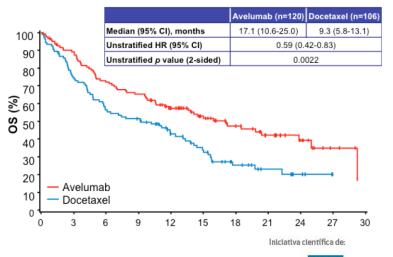

rival (%)

PROs in CheckMate 227




Spanish Lung Cancer Group

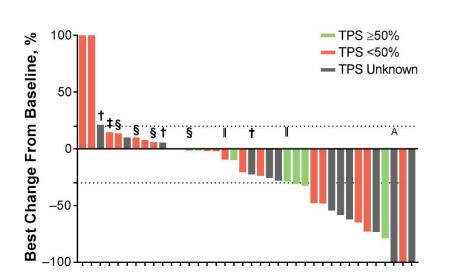
Avelumab vs Docetaxel pretreated JAVELIN Lung 200


LUNG CANCER UPDATES IASLC HIGHLIGHTS 23-26 SEPTIEMBRE 2018, TORONTO

≥50% PD-L1+

≥80% PD-L1+

Grupo Español de Cáncer de Pulmón Spanish Lung Cancer Group **Epacadostat Plus Pembrolizumab in Patients With Non-Small Cell Lung Cancer: Phase 1/2 Results From ECHO-202/KEYNOTE-037**

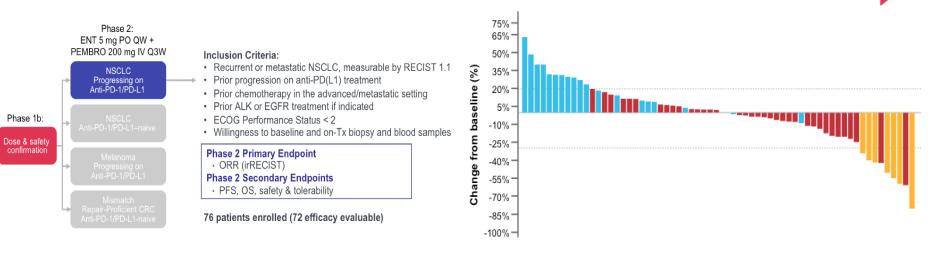

Key Eligibility Criteria


- Adult patients with stage IIIB, IV, or recurrent NSCLC were enrolled
- Phase 2 patients must have had progression after platinum-based chemotherapy and an appropriate TKI (for those with an *EGFR*-sensitizing mutation and *ALK* gene rearrangement)
- · Baseline tumor biopsies were required
- Prior treatment with an immune checkpoint inhibitor or IDO inhibitor was not allowed

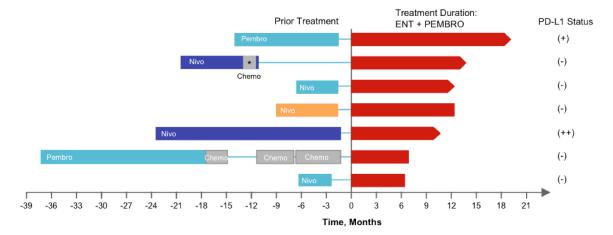
Treatment

23-26 SEPTIEMBRE 2018 TORONTO

- Phase 1: epacadostat (25 mg, 50 mg, 100 mg, or 300 mg) BID + pembrolizumab (2 mg/kg or 200 mg Q3W)
- Phase 2 (RP2D): epacadostat 100 mg BID + pembrolizumab 200 mg Q3W



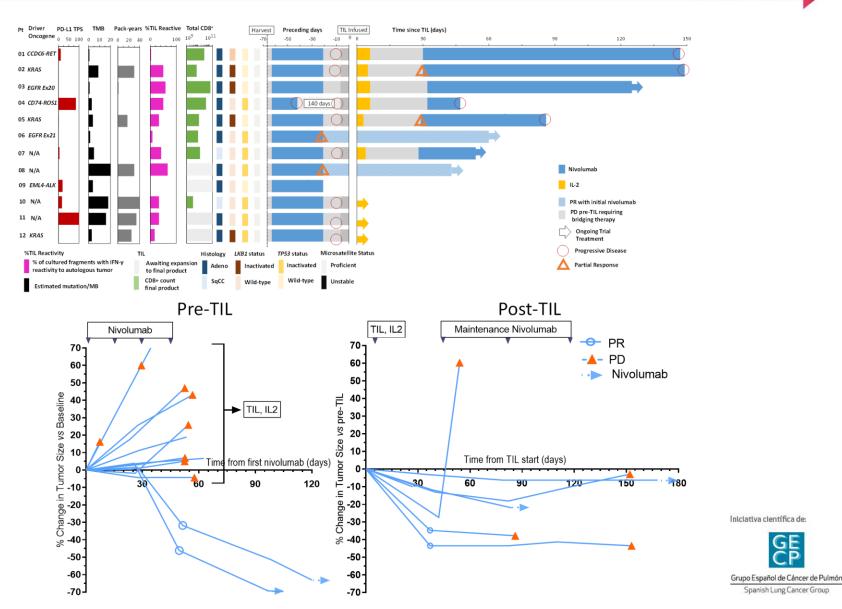
Iniciativa clentífica de:



Entinostat and Pembrolizumab ENCORE601

PD 📕 SD 🦰 PR Confirmed

- Independent of pre-treatment PD-L1 expression and response to prior PD-1 blockade
- Predictors (higher levels of peripheral monocytes) and dynamics (suppressed MDSCs, increased CD8s) on


Iniciativa clentífica de:

Adoptive TIL transfer in association with Nivolumab in PD

LUNG CANCER EG 23-26 SEPTIEMBRE 2018 TORONTO

G

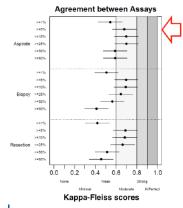
Molecular subtypes sorted by best response (RECIST1.1)

																PD			SD		P	R/CR	
BRAF other (n=17)											BRAF	other	(n=17)	6	(35.3%)	4	(23.5%)	7	(41.2%)	1
MET exon14 (n=21)											MET (exon14	(n=21)	10	(47.6%)	8	(38.1%)	3	(14.3%)	
KRAS (n=246)											KRAS	(n=246	5)	125	(50.8%)	57	(23.2%)	64	(26.0%)	
EGFR other (n=34)											EGFR	other	(n=34)	19	(55.9%)	11	(32.4%)	4	(11.8%)	
EGFR exon21 (n=24)											EGFR	exon21	(n=24)	14	(58.3 %)	5	(20.8%)	5	(20.8%)	
BRAF V600E (n=13)											BRAF	V600E	(n=13)	8	(61.5%)	3	(23.1%)	2	(15.4%)	
MET other (n=8)											MET (other	n=8)	5	(62.5%)	3	(37.5%)	0	(0.0%)	
HER2 (n=27)											HER2	(n=27)		18	(66.7%)	7	(25.9%)	2	(7.4%)	
ALK/ROS1/RET (n=41)											ALK/I	ROS1/RE	T (n=41) 30	(73.2%)	9	(22.0%)	2	(4.9%)	
EGFR T790M (n=27)											EGFR	т790м	(n=27)	21	(77.8%)	5	(18.5%)	1	(3.7%)	
EGFR exon19 (n=21)											EGFR	exon19	(n=21)	18	(85.7%)	1	(4.8%)	2	(9.5%)	
																		-					
		20	30	40	50	 60	70	80	90	100	-												
	0 10	20	50		ent of patie		10	00	30	100													
			PR/C	R		SD		F	PD														

Iniciativa clentífica de:

BLUEPRINT 2B

The Blueprint 2 team 28 IASLC investigators 15 countries 5 continents STATISTICS: M. Pintilie (Toronto)

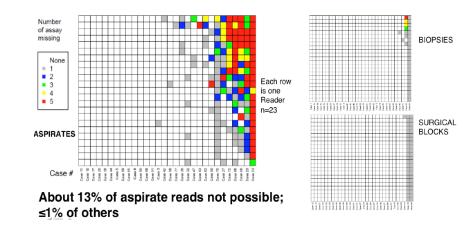

Blueprint 2A outcomes

- Blueprint phase 2A involving real-life clinical lung cancer samples and 25 pathologists largely affirms the results of Blueprint phase 1
- 22C3, 28-8 and SP263 are comparable, SP142 detects less, while 73-10 stains more PD-L1 positive tumor cells
- PD-L1 scoring on digital images and glass slides show comparable reliability
- Scoring of tumor cell PD-L1 expression by pathologists on tissue samples shows strong reliability
- Scoring of immune cell PD-L1 expression 5. remains challenging for pathologists, with poor reliability
- Scoring of PD-L1 expression on cytology 6. samples may have moderate reliability; this requires further confirmation

Materials (Blueprint phase 2B)

Thirty one triplet samples (whole tissue block, core or forceps biopsy and FNA • cell block) were prospectively collected from routine clinical practice of 11 pathologists (IASLC Pathology Committee members), using locally approved research protocols

	Histology of case material
Adenocarcinoma	17
Squamous cell carcinoma	12
Large cell	2
Total	31



Good agreement between assays around specified cut points

Mean, Median values of TPS

Assay	Aspirate (Mean,median)	Biopsy (Mean,median)	Resection (Mean,median)	Aspirate vs. Biopsy (p)	Aspirate vs. Resection (p)	Biopsy vs. Resection (p)
22C3	19.0,0.9	18.2, 0.7	22.2, 0.5	0.31	0.90	0.26
28-8	21.6,1.7	19.0, 0.9	21.6, 2.6	0.13	0.79	0.19
73-10	26.0, 2.4	26.3, 2.8	27.4, 3.3	0.86	0.18	0.41
SP142	5.2, 0	4.2, 0.04	6.8, 0.09	0.57	0.49	0.12
SP263	22.4, 1.5	23.7, 2.7	25.3, 4.2	0.18	0.031	0.25
	4	7	The p-value	s are based o	n Wilcoxon sig	ned-rank tes

Mean, median values differ between some assays out not between sample types

Iniciativa científica de:

